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Deep Learning for Real World Problems
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Object Detection Human Understanding Autonomous Driving



Datapoint 1

Datapoint 2

Datapoint 3

Representation learning

Representation 1

Representation 2

Representation 3

Embedding Space

High-level representations are typically nuisance-invariant



Neuron and Synapse



Neural Network
Synapses/weights

Synapses / weights

Neurons / Activations



Activation Functions
Synapses/weights

logistic

tanh

REctified Linear 

Unit (RELU)
Leaky RELU

Good ones



Fully Connected (Dense) Layer
Synapses/weights

Each output neuron is connected to all previous
layer neurons

y2y1y0

x4x3x0 x1 x2

w00 w42

coci

=
co

WTX Y

ci

• Shape of Tensors:

Input Features X : (1, ci) 

Output Features Y : (1, co) 

Weights W : (co, ci)

Bias b : (co, )



Scaling Issue in Fully Connected Layers
Synapses/weights

The number of weights grows quadratically with the number of neurons

Complexity of handling image data



Convolutional Neural
Networks and Intuition



Intuition Behind Convolution Layer (1)

Restricting the degrees of freedom 
o A structured layer to process a small region with fewer 

weights (many useful features are local)

Layer 1: 
edge detectors?

Layer 2: 
beak? wing?



Intuition Behind Convolution Layer (1)

Restricting the degrees of freedom 
o A structured layer to process a small region with fewer 

weights (many useful features are local)

“beak” 
detector



Intuition Behind Convolution Layer (2)

Restricting the degrees of freedom 
o Weight sharing: using the same weights for different parts 

of the image

“upper-left 
beak” detector

“middle beak” 
detector

Weight sharing



Transitioning from Fully Connected to 
Convolution Layer

● Local Connectivity 

● Weight Sharing

● Multiple Feature Detectors



Connectivity Pattern: Fully Connected vs. Convolution Layer

FC layer

Image is 𝟏𝟐𝟖 × 𝟏𝟐𝟖 × 𝟑 = 𝟒𝟗, 𝟏𝟓𝟐

First layer is 𝟔𝟒-dim

𝟔𝟒 × 𝟒𝟗, 𝟏𝟓𝟐 ≈ 𝟑, 𝟎𝟎𝟎, 𝟎𝟎𝟎

Convolution layer

Patch is 𝟑 × 𝟑 × 𝟑 = 𝟐𝟕

First layer is 𝟔𝟒-dim

𝟔𝟒 × 𝟐𝟕 = 𝟏𝟕𝟐𝟖



Convolutions?



Convolution on Images?



Filter Effects

Input −1 −1 −1
−1 8 −1
−1 −1 −1

Sharpen

0 −1 0
−1 5 −1
0 −1 0

Box mean

1 1 1 1

9 
1 1 1
1 1 1

Gaussian blur

1 1 2 1

16 
2 4 2
1 2 1

Edge detection



Filter Effects

Input −1 −1 −1
−1 8 −1
−1 −1 −1

Sharpen

0 −1 0
−1 5 −1
0 −1 0

Box mean

1 1 1 1

9 
1 1 1
1 1 1

Gaussian blur

1 1 2 1

16 
2 4 2
1 2 1

Edge detection



Convolutions on Volumetric Images

Images have depth: e.g., RGB → 3 channels

Convolve filter with image 
i.e., ‘slide’ over it and: 
– Apply filter at each location 
– Compute dot product

width

filter 5×5×3

3
5

5

Depth dimension *must* match; i.e., filter 
extends the full depth of the input 

32

32

image 32×32×3

height depth

Slide from I2DL: Prof. Cremers



Convolutions on Volumetric Images

(5×5×3)×1 (5×5×3)×1 1

32

32

3

3
5

5

32×32×3 image (𝑿)

5×5×3 filter (weight tensor𝒘)

1 number at time: 
equals to dot product between 
filter weights 𝒘 and 𝒙𝒊 − 𝑡ℎ chunk 
of the image. Here: 5.5.3=75-dim 
+bias

𝑧𝑖 = 𝑤𝑇𝑥𝑖 + 𝑏
𝑧𝑖

Slide from I2DL: Prof. Cremers



Convolutions on Volumetric Images

Activation map 

(also feature map)

Slide over all spatial locations 𝑥𝑖
and compute all output 𝑧𝑖 ,
there are 28×28 unique 
locations

1

28

28
32

32

3

3
5

5

32×32×3 image

5×5×3 filter

Convolve



Convolutions on Volumetric Images

32

3
5

5

32×32×3 image

5×5×3 filter

28

Feature maps

Let’s apply a second filter 
with different weights! 

Convolve

1 132

3

28



Convolution Layer

32

32

3

32×32×3 image

6

28

28

Convolution “Layer”

Let’s apply **six** filters, each with different weights! 

Feature maps

➢ Filter width, height
➢ Number of filters 

Convolution
Layer



Convolution Layer

32

32

3

32×32×3 image

6

28

28

Let’s apply **six** filters, each with different weights! 

Feature maps

Convolution
Layer

Also 6-dim bias vector:



Stride

How far to move filter (kernel) between applications

Increasing stride downsamples the image



Stride

How far to move filter (kernel) between applications

Increasing stride downsamples the image

𝑁×𝑁
𝑭 × 𝑭
𝑆

𝑁 − 𝐹

𝑆
+ 1

𝑁 − 𝐹

𝑆
+ 1

Input: 
Filter:
Stride:
Output:



Padding

Convolutions have problems on edges



Padding

Convolutions have problems on edges



Padding

Convolutions have problems on edges

Pad: add extra pixels on images

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0
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Padding

Convolutions have problems on edges

Pad: add extra pixels on images

Padding maintains feature map dimensions after convolution

Conv +

 ReLU

The spatial size would decrease too rapidly 32 → 28 → 24 → 20

Conv +

 ReLU
Conv +

 ReLU

32 28 24 205 filters

5 × 5
× 3

8 filters

5 × 5
× 5

12 filters
5 × 5 × 85 8 12



Pooling Layer

Processing: pool values over a region of the feature map

Output: a reduced version of the feature map by a factor of the stride

Pooling types: Max, Average

Most common: 2×2 maxpooling, stride of 2

7 3 5 2

8 7 1 6

4 9 3 9

0 8 4 5

8 6

9 9

Input feature map (single slice)

2×2 maxpooling
and stride of 2

‘Pooled’ output



Pooling Layer

Introduces (small) translation invariance 



CNN Prototype for Image Classification

Feature Extractor : Convolution+ ReLU activations+ Pooling (repeated) 

Classification Head : Flattening→ FC Layers→Output Classification



Softmax: Multi-Class Classification

Softmax: the normalized exponential function of all scores (logits)

● 𝐱 represents the input features (final layer)

● 𝑺𝒊 is unnormalized score of class 𝒊 (final layer)
𝑝 𝑦 = 𝑖ȁx =

𝑒𝑆𝑖

σ𝑗=1
𝐾 𝑒𝑆𝑗

𝑝 𝑦 = 𝑖ȁx =
𝑒𝑆𝑖

σ𝑗=1
𝐾 𝑒𝑆𝑗



Cross-Entropy Loss for Multi-Class Classification

▪ 𝒚𝒊 is the one-hot encoded label for class 𝒊

▪ 𝒑𝒊 is the predicted probability of class 𝒊

ℒ = −෍

𝑖=1

𝐾

𝑦𝑖 log 𝑝𝑖



Cross-Entropy Loss for Multi-Class Classification

▪ 𝒚𝒊 is the one-hot encoded label for class 𝒊

▪ 𝒑𝒊 is the predicted probability of class 𝒊

ℒ = −෍

𝑖=1

𝐾

𝑦𝑖 log 𝑝𝑖

The gradient of loss w.r.t. logit

For the correct class 𝑗 𝑦𝑗 = 1



Cross-Entropy Loss for Multi-Class Classification

▪ 𝒚𝒏,𝒊 is the actual label for the 𝒏-th sample for class 𝒊

▪ 𝒑𝒏,𝒊 is the predicted probability for the 𝒏-th sample of class 𝒊

▪ 𝑵 is the number of samples in a batch

ℒ𝑡𝑜𝑡𝑎𝑙 = −
1

𝑁
෍

𝑛=1

𝑁

෍

𝑖=1

𝐾

𝑦𝑛,𝑖log 𝑝𝑛,𝑖



CNN Learns Hierarchical Features

2014
Visualizing and Understanding Convolutional Networks



Optimizing Neural
Networks



Loss Optimization

Finding network’s parameters (weights) that achieve the 
lowest loss

𝑊∗ = argmin
𝑊

1

𝑛
෍

𝑖=1

𝑛

ℒ 𝑓 𝑥 𝑖 ;𝑊 , 𝑦 𝑖

𝑊∗ = argmin
𝑊

𝐽 𝑊

𝑊 = 𝑊 0 ,𝑊 1 , ⋯



Loss Optimization

○ Randomly pick a point 𝑤0, 𝑤1

○ Compute gradient, 
𝜕𝐽 𝑊

𝜕𝑊

○ Take a small step in the opposite 
direction of the gradient

○ Repeat this process until convergence

𝑤0

𝑤1

𝐽 𝑤0, 𝑤1



Mini-Batch Gradient Descent

● Algorithm:

○ Initialize weights randomly ~𝒩 0, 𝜎2

○ Loop until convergence:
○ Pick a mini-batch of 𝐵 data samples

○ Compute gradient,
𝜕𝐽 𝑊

𝜕𝑊
=

1

𝐵
σ𝑘=1
𝐵 𝜕𝐽𝑘 𝑊

𝜕𝑊

○ Update weights, 𝑊 ← 𝑊 − 𝛼
𝜕𝐽 𝑊

𝜕𝑊
○ Return weights

𝐽 𝑤0, 𝑤1

𝑤0

𝑤1

Use a suitable method (e.g., Xavier or He initialization) to 

ensure stable variance of activations and gradients.

Better estimation of true gradient and fast to compute, 
smoother convergence 



Backpropagation: Chain Rule in Action

𝑥 𝑧1 ො𝑦
𝑤1 𝑤2

𝐽 𝑊

𝜕𝐽 𝑊

𝜕𝑤2
=
𝜕𝐽 𝑊

𝜕 ො𝑦
∗
𝜕 ො𝑦

𝜕𝑤2



Backpropagation: Chain Rule in Action

𝑥 𝑧1 ො𝑦
𝑤1 𝑤2

𝐽 𝑊

𝜕𝐽 𝑊

𝜕𝑤2
=
𝜕𝐽 𝑊

𝜕 ො𝑦
∗
𝜕 ො𝑦

𝜕𝑤2

Let’s apply chain rule !



Backpropagation: Chain Rule in Action

𝑥 𝑧1 ො𝑦
𝑤1 𝑤2

𝐽 𝑊

𝜕𝐽 𝑊

𝜕𝑤1
=
𝜕𝐽 𝑊

𝜕 ො𝑦
∗
𝜕 ො𝑦

𝜕𝑤1

Apply chain rule



Backpropagation: Chain Rule in Action

𝜕𝐽 𝑊

𝜕𝑤1
=
𝜕𝐽 𝑊

𝜕 ො𝑦
∗
𝜕 ො𝑦

𝜕𝑧1
∗
𝜕𝑧1
𝜕𝑤1

𝑥 𝑧1 ො𝑦
𝑤1 𝑤2

𝐽 𝑊



Gradient Dynamics in Deep Network Training

𝜕𝐽

𝜕𝑤1
=

𝜕𝐽

𝜕ℎ𝑛
∗

𝜕ℎ𝑛
𝜕ℎ𝑛−1

∗
𝜕ℎ𝑛−1
𝜕ℎ𝑛−2

∗ ⋯∗
𝜕ℎ2
𝜕ℎ1

∗
𝜕ℎ1
𝜕𝑤1

In most cases, there are two possible solutions:

● We get zero if 

● We get infinity if 

● We only get a reasonable answer if the numbers are all 
close to one 

𝜕ℎ𝑖
𝜕ℎ𝑖−1

< 1 → ෑ

𝑖=2

𝑛
𝜕ℎ𝑖
𝜕ℎ𝑖−1

⋯ Vanish!

𝜕ℎ𝑖
𝜕ℎ𝑖−1

> 1 → ෑ

𝑖=2

𝑛
𝜕ℎ𝑖
𝜕ℎ𝑖−1

⋯ Explode!



Limitations of Gradient Descent + Alternatives

Challenges with Vanilla Gradient Descent:

- Oscillations due to anisotropic curvature of the loss surface

- Slow convergence

We take multiple back and forth 

steps in this direction. We’d ideally like to move faster in this direction

Source: A. Ng



Limitations of Gradient Descent + Alternatives

Gradient Descent with Momentum:

- Smoother updates, dampens oscillations

- Speeds up convergence

[Sutskever et al., ICML’13] On the importance of initialization and momentum in deep learning



Limitations of Gradient Descent + Alternatives

Adam (Adaptive Moment Estimation) Optimizer:

- Combines momentum (first moment of gradients) with adaptive learning 

rates based on the second moment (squared gradients)

- Popular in deep learning due to its robustness

Note: Many other optimizers exist (e.g., RMSProp, Adagrad, AdamW)

[Kingma et al., ICLR'15] Adam: A method for stochastic optimization



Learning Rate Tuning
Synapses/weights

lo
ss

epoch
Good learning rate

Low learning rate

model gets stuck in false 
local minima or plateau

High learning rate

never reaches the optimum



Regularization & 
Data Augmentation



Over-and Underfitting
Synapses/weights

Underfitted Appropriate Overfitted

Source: Deep Learning by Adam Gibson, Josh Patterson, O‘Reily Media Inc., 2017



Over-and Underfitting
Synapses/weights

Training/ Validation curve

Credits: Deep Learning. Goodfellow et al.

Training error 
too high

Generalization 
gap is too big



Over-and Underfitting
Synapses/weights

Training/ Validation curve

Regularization

Credits: Deep Learning. Goodfellow et al.

Training error 
too high

Generalization 
gap is too big

How can we 
prevent our model 
from overfitting?



Regularization
Synapses/weights

• Loss function ℒ 𝑦, Ƹ𝑦,𝑤 = σ𝑖=1
𝑛 ො𝑦𝑖 − 𝑦𝑖

2 + 𝜆𝑅 𝑤

• Regularization techniques
– L2 regularization

– L1 regularization

– Dropout

– Early stopping

– ⋯

Add regularization 
term to loss function



Regularization Example
Synapses/weights

• Input :3 features 𝑥 = 1,2,1

• Two linear classifiers that give the same result:

• 𝑤1 = 0, 0.9, 0

• 𝑤2= 0.15, 0.75, 0.15

Ignores 𝟐 features

Use all features



Regularization Example (L2)
Synapses/weights

• Loss function ℒ 𝑦, Ƹ𝑦,𝑤 = σ𝑖=1
𝑛 𝑥𝑖𝑤𝑗𝑖 − 𝑦𝑖

2
+ 𝜆𝑅 𝑤

• L2 regularization 𝑅 𝑤 = 𝑤 2
2 = σ𝑖=1

𝑛 𝑤𝑖
2

𝑥 = 1, 2, 1 , 𝑤1 = 0, 0.9, 0 , 𝑤2 = 0.15, 0.75, 0.15

𝑅 𝑤1 = 0 + 0.92 + 0 = 0.81

𝑅 𝑤2 = 0.152 + 0.752 + 0.152 = 0.6075 Minimization

Promotes weight 
uniformity



Regularization Example (L1)
Synapses/weights

• Loss function ℒ 𝑦, Ƹ𝑦,𝑤 = σ𝑖=1
𝑛 𝑥𝑖𝑤𝑗𝑖 − 𝑦𝑖

2
+ 𝜆𝑅 𝑤

• L1 regularization 𝑅 𝑤 = 𝑤 1 = σ𝑖=1
𝑛 𝑤𝑖

𝑥 = 1, 2, 1 , 𝑤1 = 0, 0.9, 0 , 𝑤2 = 0.15, 0.75, 0.15

𝑅 𝑤1 = 0 + 0.9 + 0 = 0.9

𝑅 𝑤2 = 0.15 + 0.75 + 0.15 = 1.05

Minimization

enforces sparsity



Regularization: Effect (L1)
Synapses/weights

• Dog classifier takes different inputs

Furry

Has two eyes

Has a tail

Has paws

L1 regularization

encourages the model 
to rely on only a few 
key features 

Has two ears



Regularization: Effect (L2)
Synapses/weights

• Dog classifier takes different inputs

Furry

Has two eyes

Has a tail

Has paws

L2 regularization

leverages all 
information to 
influence model 
learning

Has two ears



Data Augmentation: Motivation
Synapses/weights

Pose Appearance Illumination



Data Augmentation
Synapses/weights

• A classifier has to be invariant to a wide variety of transformations
• Augmentation: simulating plausible transformations

Libraries: torchvision.transforms, Kornia, Albumentations



Valid & Plausible Transformations for Data Augmentation
Synapses/weights

• Any operation that does not alter the original label
• Domain specific consideration: simulating domain shift

Stainlib: a Python library for augmentation of histopathology images



Data Augmentation: Advanced (Mixup & Variants)
Synapses/weights

Mixup: Beyond Empirical Risk Minimization



Data Augmentation: Advanced (RandAugment)
Synapses/weights

RandAugment: Practical automated data augmentation with a reduced search space



Vision Benchmarks, 
ResNet, BatchNorm & 

Transfer Learning



Key Datasets as Benchmarks for Image Classification

● Example datasets:

○ MNIST (handwritten digits), 1990s-today: 60,000 images

○ CIFAR 10 & CIFAR 100, 2009: ~60,000 images

○ ILSVRC (ImageNet-1K), 2009: 1.2 million training images, 1000 categories

Google's JFT-300M

ImageNet- 21K

ImageNet- 1K

CIFAR - 10

MNIST

LAION- 400M



CNN Architectures: Accuracy vs. Complexity



Residual Networks (ResNets)

Weight Layer

Weight Layer

𝑅𝑒𝐿𝑈

𝑅𝑒𝐿𝑈

𝐻(𝑥)

Any stack of 

two layers

Plain Net 
𝑥

Weight Layer

Weight Layer

𝑅𝑒𝐿𝑈

𝑅𝑒𝐿𝑈

+𝐹 𝑥 + 𝑥

Residual Net 
𝑥

𝐹(𝑥)
Identity

𝑥

𝐻(𝑥)=

2016
Deep Residual Learning for Image Recognition

𝑅𝑒𝐿𝑈

𝑅𝑒𝐿𝑈

𝐹 (𝑥) + 𝑥𝐻(𝑥)=

+



ResNets ResNet

Skip Connection

Why is this model important?

o Frequently used today

o Skip connections and use of batch normalization

o Use of global average pooling instead of FC layers



Depth vs. Performance

dashed:  train 
solid:       test

CIFAR-10 Experiments



Reduces “internal covariate shift”

Batch Normalization



Reduces “internal covariate shift”

Normalizes activations batch-wise; 
fully differentiable for backprop

Batch Normalization



Batch Normalization (Fully Connected Version)

Input:

Normalized x, 
Shape is N x D

Per-feature 
std, shape is D

XN

D

Per-feature 
mean, shape is D

(num of features) (m
in

i-
b

a
tc

h
 s

iz
e

) 



Batch Normalization (Fully Connected Version)

Input:

Per-feature 
std, shape is D

XN

D

Problem: What if zero-mean, unit 
variance is too hard of a constraint?

Normalized x, 
Shape is N x D

Per-feature 
mean, shape is D



Batch Normalization (Fully Connected Version)

Input:

Per-feature 
std, shape is D

Learnable scale and 
shift parameters:

Learning = ,
= will recover the

identity function!

Output, 
Shape is N x D

Normalized x, 
Shape is N x D

Per-feature 
mean, shape is D

Batchnorm eliminates the need for bias terms



Batch Normalization : Test-Time

Input:

Per-feature 
std, shape is D

Learnable scale and 
shift parameters:

Learning = ,
= will recover the

identity function!

Output, 
Shape is N x D

Normalized x, 
Shape is N x D

Minibatch-dependent estimates

Per-feature 
mean, shape is D



Batch Normalization : Test-Time

Input:

Per-feature 
std, shape is D

Learnable scale and 
shift parameters:

Output, 
Shape is N x D

Per-feature 
mean, shape is D

Normalized x, 
Shape is N x D

(Running) average of
values seen during 

training

(Running) average of
values seen during 

training

-During testing, batchnorm 
becomes a fixed linear (affine) 
transformation.
-Can be fused with previous 
weight layer with no extra 
overhead



Batch Normalization for ConvNets

Batch Normalization for

fully-connected networks

x: N × D

Normalize

𝜇,𝝈: 1 × D

𝜸,β: 1 × D

y = 𝜸(x-𝜇)/𝝈+β

Batch Normalization for

convolutional networks

(Spatial Batchnorm, BatchNorm2D)

x: N×C×H×W

Normalize

𝜇,𝝈: 1×C×1×1

𝜸,β: 1×C×1×1

y = 𝜸(x-𝜇)/𝝈+β



Other Normalizations



Transfer Learning: Fine-Tuning for a New Task



Transfer Learning

o Optimized learning with scarce data, freeze early layers, replace final 
classification layers

o Optionally fine-tune deeper layers if the new domain differs significantly

Freeze

Replace



Segmentation

Object Detection

Versatile Applications
of CNNs



Semantic Segmentation: Fully Convolutional Networks

o Network designed with only convolutional layers, handling arbitrary input sizes

o Uses downsampling and upsampling operations (transpose convolutions)

Recent approaches like U-Net and other encoder-decoder designs follow a similar 
paradigm



You Only Look Once (YOLO)



Prior Two-Step Object Detection Approaches

[Girshick et al., CVPR’14] Rich feature hierarchies for accurate object detection and semantic segmentation

[Ren et al., NIPS’15] Faster R-CNN: Towards real-time object detection with region proposal networks

1

1

2

2



YOLO Grid-Based Prediction



Prediction Post-Processing in YOLO

1- Remove the low probability bounding boxes 

2- Apply non-max suppression (NMS)

Limitations: struggles with small objects/crowded scene

YOLOv3, v4, v5, v7, and YOLOv8 add multi-scale predictions & stronger backbones.

1 2



Prediction Post-Processing in YOLO

1- Remove the low probability bounding boxes 

2- Apply non-max suppression (NMS)

Limitations: struggles with small objects/crowded scene

YOLOv3, v4, v5, v7, and YOLOv8 add multi-scale predictions & stronger backbones.

1 2



Vision Transformer



2017
Attention Is All You Need





By Francisco Castillo Carrasco (towards data science)



Sequence of Tokens

Input Embedding



Image Patching



16 px

16 px



channels

width

height

patch size

Number of Patches x c x p1 x p2



Pixel 1 - R

Pixel 1 - G

Pixel 1 - B

Pixel 2 - R

Pixel 2 - G

Pixel 2 - B

Pixel p1p2 - R

Pixel p1p2 - G

Pixel p1p2 - B

Number of Patches x c x p1 x p2

FC Layer

Number of Patches x DNumber of Patches x c x p1 x p2

D = Dimension at which transformer layers will operate



Pixel 1 - R

Pixel 1 - G

Pixel 1 - B

Pixel 2 - R

Pixel 2 - G

Pixel 2 - B

Pixel p1p2 - R

Pixel p1p2 - G

Pixel p1p2 - B

Number of Patches x c x p1 x p2

FC Layer

Number of Patches x c x p1 x p2

D = Dimension at which transformer layers will operate

N = Number of patches (size of the sequence of tokens)

N x D



The CLS Token



Source: A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization



The Positional
Embedding



That‘s patch #4

That‘s patch #16

Source: Amirhossein Kazemnejad's Blog

Fixed vs. Learned Positional Embeddings



Fixed vs. Learned Positional Embeddings

2020
An Image is Worth 16× 16 Words



Convert Image into Sequence of 

Patches

Add CLS token to sequence of 

Patches

Add Positional Information to 

Patches

Patch Embedding



Attention 
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CNNs ViT

Strong inductive bias

(translation invariance)

Not too data-hungry

Hierarchical structure

(receptive field)

No strong inductive bias

Data-hungry

Global structure

(attention)



Source: Exploring Explainability for Vision Transformers 

(Jacob Gildenblat)2020
Quantifying Attention Flow in Transformers

Attention Map Visualization 
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