fo— "1‘.._/\

)| | A "‘%\‘;J. \y :j".
Behzad Bozorgtabar

. H 7 Wi — -7. \\ \ 7
Image Analysis a)n"dPéHern Recognition, EE-451 N/
i " — A\

EPFL, LTS5 /-

Deep Learning for Real World Problems

Autonomous Driving

‘r.

Datapoint 1

MA
')/

Representation learning

AN

NN

SO

V’//

\‘ 4I
Al '/.

‘o‘ 'or | ’:';

i N i

m A
WY ‘\' "l 1 ¥

A\\\ /N
*\oe)!

I' 1\

A

Representation 1

Representation 2

Representation 3

Embedding Space

Neuron and Synapse

Synapse

/

Synaptic Terminals

Cell Body

/

Synapse
Wo

[]
WoX
o }’j=f(2wixi+b)

X WX
AN

WwoXy \ Output Axon

x2 . .
@ \ Activation

Dendrite Cell Body Function

Neural Network

Synapses / weights]

% Neurons / Activations J
A
.

\
MA)&
W7

4’}.\;‘ m\"

'I) 1\“

\Hf}‘\\ﬁ/

”'IL

/

\/

Activation
Dendrite Cell Body Function

Activation Functions

logistic

-1}
-) = W1 [

Good ones

-

REctified Linear
Unit (RELU)

|[x'- A]
L [I

Fully Connected (Dense) Layer

2

Each output neuron is connected to all previous

Woo W,y
layer neurons ‘ ‘ ‘

* Shape of Tensors:
Input Features X : (1, Cj)

Output Features Y : (1, Cy)
Weights W : (C,, Ci)
Bias b : (Co,) G Co

Ci| rr-

Scaling Issue in Fully Connected Layers

The number of weights grows quadratically with the number of neurons

Complexity of handling image data

O0000000000D0DDDO0DD

Q'
Qs
Ll B
Q.
o)
o
o,
Ae
a, -
d,
d
d
o
d
d

o
o(n?)

Convolutional Neural
Networks and Intuition

Intuition Behind Convolution Layer (1)

Restricting the degrees of freedom
o A structured layer to process a small region with fewer
weights (many useful features are local)

Layer 1: Layer 2:
edge detectors? beak» wing?

Intuition Behind Convolution Layer (1)

Restricting the degrees of freedom
o A structured layer to process a small region with fewer
weights (many useful features are local)

/Eﬂ
v",_ .

N .~
W N\

detector

Intuition Behind Convolution Layer (2)

Restricting the degrees of freedom
o Weight sharing: using the same weights for different parts
of the image

“upper-left
beak” detector

“middle beak”
detector

Transitioning from Fully Connected to
Convolution Layer

e Local Connectivity

e Weight Sharing

e Multiple Feature Detectors

Connectivity Pattern: Fully Connected vs. Convolution Layer

Image is 128 X 128 X 3 = 49,152
First layer is 64-dim FC layer
64 X 49,152 =~ 3,000,000

Patchis 3 X3 X 3 = 27
First layer is 64-dim Convolution layer
64 x27 =1728

Convolutions?

Kernel

Convolution on Images”?

Filter Effects

Edge detection ' : Box mean
[—1 ~1 —1‘ ‘_; 1M1 1‘

51 1 1

-1 8 -1 9

-1 -1 -1 1 1 1

Gaussian blur
8 %]
|2
16 1 2 1

Filter Effects

Edge detection ' ' Box mean
-1 -1 -1 | \ 11 1 1‘

-1 51 1 1
9
: 1 1 1

Gaussian blur
8 %]
|2
16 1 2 1

Convolutions on Volumetric Images
width height depth

in>g<; 3222]{/

/

filter 5><5>|

Convolve filter with image

i.e., ‘slide’ over it and:

— Apply filter at each location
— Compute dot product

Images have depth: e.g.. RGB — 3 channels

Slide from 12DL: Prof. Cremers

Convolutions on Volumetric Images

32x32x3 image (X)

\ filter (weight tensor w)

number at time:
equals to dot product between
/ filter weights w and x; — th chunk
of the image. Here: 5.5.3=75-dim
+bias

TN

(5x5x3)x1 (5%5x3)x1 1

Slide from 12DL: Prof. Cremers

Convolutions on Volumetric Images

Activation map
32x32x3 image (also feature map)

5x5x3 filter

Slide over all spatial locations x;
and compute all output 7;
there are 28%x28 unique
locations

Convolutions on Volumetric Images

32x32x3 image

/ 5x5x3 filter Feature maps

Let’s apply a second filter
with different weights!

Convolution Layer

. .« - Filter width, height
32x32x3 image Convo""‘“on Layer Number of filters

[|
/ Feature maps
32 Layer

//// 28
5 i W

Let’s apply *six* filters, each with different weights:

Convolution

Convolution Layer

32x32x3 image
Also 6-dim bias vector:
BEEEER Feature maps
Convolution
32 Layer

//// 28
5 i W

Let’s apply *six* filters, each with different weights:

Stride

How far to move filter (kernel) between applications

Increasing stride downsamples the image

Stride

How far to move filter (kernel) between applications

Increasing stride downsamples the image

Input: NxXN
Filter: FXF

Stride: S

Output: (N ; F n 1) (N ; F

Padding

Convolutions have problems on edges

Padding

Convolutions have problems on edges

Padding

Convolutions have problems on edges
Pad: add extra pixels on images

0
£ 0
3
g- 0
o) 0
S 0
+
N~ 0
i
% 0
g 0
- 0

Padding

Convolutions have problems on edges
Pad: add extra pixels on images

Padding maintains feature map dimensions after convolution

Conv + Conv +
RelU RelU

=] =

32 5f||ters 28 8 filters 24 12 filters 20
5><5 5 5X5 8 5X5X8 12

X 5
The spatial 5|ze would decrease too rapidly (32 — 28 - 24 - 20)

Pooling Layer

Processing: pool values over a region of the feature map

Output: a reduced version of the feature map by a factor of the stride
Pooling types: Max, Average

Most common: 2X2 maxpooling, stride of 2

Input feature map (single slice)

7/ 3 5 2 2x2 maxpooling ‘Pooled’ output
and stride of 2

7 I 6 :: 8 6
9 3 9 9 9
8 5

8
4
0

Pooling Layer

Introduces (small) translation invariance

. 1/1]1]1 N
\ /000 ’7 7 I—I
-_— 1000 |
ERRN 2| e J
Conwv Filter of Ouput of Conv Output of Max
Input image of letter 'C' size:(4,4) layer Pooling layer
Convolutional Layer
1111 \
SR \ 10]0]0 _] P u
| —/ 1({o/o|o0
1.1‘1.1 ‘ A
) Conv Filter of Ouput of Conv Output of Max
!gpg;#tn;ggo%rlletter size:(4.4) layer Pooling layer

Convolutional Layer

CNN Prototype for Image Classification

Feature Extractor : Convolution+ RelU activations+ Pooling (repeated)
Classification Head : Flattening— FC Layers—Output Classification

Convolution Neural Network (CNN)

Pooling Pooling Pooling

[ITTITTTTTTIT]

Activation
Function

Convolution Convolution Convolution

Kernel R;LU RgLU R;'LU Flatten
Layer Full
ully
L—Connected———

Layer

Feature Extraction Classification Probabilistic
Distribution

Feature Maps

Softmax: Multi-Class Classification

Softmax: the normalized exponential function of all scores (logits)

® x represents the input features (final layer) e

. . . g =1X) =
® S;is unnormalized score of class i (final layer) p(y %) ﬁ'{:l e°]

Output
probabilities Classes
(P)

Input image Logits (L) Softmax

——

| p(y = il%) = 55—
j=1€1

Cross-Entropy Loss for Multi-Class Classification

" 1y, is the one-hot encoded label for class i

p; is the predicted probability of class i

K
L=- z yilog(p;)
i=1

cat dog

horse

0.71 | 0.26

Range of negative log-likelihood

0.04

0.02 | 0.00

0.98

—log(a) at the
correct classes

0.34

0.49 | 0.49

0.02

The correct class is
highlighted in red

0.02

0.71

Total: 1.07

Cross-Entropy Loss for Multi-Class Classification

K
L=- z yilog(p;)
i=1

The gradient of loss w.r.t. logit

oL

For the correct class j (yj =1)

o _ 4
88j_pj_

y; is the one-hot encoded label for class i
p; is the predicted probability of class i

cat dog

horse

0.71 | 0.26

0.04

0.02 | 0.00

0.98

—log(a) at the
correct classes

0.34

0.49 | 0.49

0.02

The correct class is
highlighted in red

0.02

0.71

Total: 1.07

Cross-Entropy Loss for Multi-Class Classification

" y,iis the actual label for the n-th sample for class i

" p,iis the predicted probability for the n-th sample of class i
" N is the number of samples in a batch

cat dOg h orse

0.7110.26 | 0.04 0.34

yn,ilog(pn,i) | —log(a) at the

correct classes
0.02 | 0.00 | 0.98 > 0.02

0.49 | 0.49 | 0.02 0.71

The correct class is

. : Total: 1.07
highlighted in red

CNN Learns Hierarchical Features

Patches from Input Image Layer 1 Structure

The first hidden layer learns to identify basic
structural elements such as edges and color blobs

Layer 5 Structure

CNNs learn hierarchical structure after several layers

Visualizing and Understanding Convolutional Networks

ptimizing Neural
Networks

Loss Optimization

Finding network’s parameters (weights) that achieve the
lowest loss

n
1 . .
W* = arg mMi/ngz L(f(x(‘); W), y(‘))
i=1

W* = arg mmi/n](W)

W = {W(O), W(l), }

Loss Optimization

Randomly pick a point (wy, w;))

oJ(W)
ow

Compute gradient,

Take a small step in the opposite
direction of the gradient
Repeat this process until convergence

Mini-Batch Gradient Descent

Use a suitable method (e.g., Xavier or He initialization) to
ensure stable variance of activations and gradients.

e Algorithm:

o Initialize weights randomly ~V'(0, %)

o Loop until convergence: ppRssy” =
o Pick a mini-batch of B data samples P -

O Compute gradient, OJW) _ Ly 9JkW) MR -

ow B k=1 ow | -';:,.i... »
Update weights, W « W — « ag(x/) 1 ‘
o Return weights "o

@)

Better estimation of true gradient and fast to compute,
smoother convergence

Backpropagation: Chain Rule in Action

Backpropagation: Chain Rule in Action

W) _yw) 9y
aWZ B 0)7 0W2

/ S

Let's apply chain rule !

Backpropagation: Chain Rule in Action

oJ(w) aJj(W) L9y
ow; 0y 0wy

/'

Apply chain rule

Backpropagation: Chain Rule in Action

aj(w) aj(w)) ay . 0z,

awl B (3)7 621 (3W1

Gradient Dynamics in Deep Network Training

0 _ 0] Ohy Ohyy Oy My
aW1 ahn 6hn 1 5hn 2 6h1 6W1

In most cases, there are two possible solutions:

S

We get if M)l <1 o Vanish!
@ - !
e get zero | h_. | . anis
T
e We get infinity if |5,) >1 - oh Explode!
1—) § i—

e We only get a reasonable answer if the numbers are dll
close to one

Limitations of Gradient Descent + Alternatives

Challenges with Vanilla Gradient Descent:

- Oscillations due to anisotropic curvature of the loss surface
- Slow convergence

0>>

Source: A Ng

We take multiple back and forth

steps in this direction. We’d ideally like to move faster in this direction

Limitations of Gradient Descent + Alternatives

Gradient Descent with Momentum:

- Smoother updates, dampens oscillations
- Speeds up convergence

Gradient descent

vy = Yvi—1 + aVJ (W)

Wt+1 — Wt — Ut A - >

Gradient descent with momentum

[Sutskever et a., ICML13] On the importance of initialization and momentum in deep learning

Limitations of Gradient Descent + Alternatives

Adam (Adaptive Moment Estimation) Optimizer:

- Combines momentum (first moment of gradients) with adaptive learning
rates based on the second moment (squared gradients)
- Popular in deep learning due to its robustness

my = Bimy—1 + (1 — 1) VI (W) (First moment: gradient mean)
vy = Bavi 1+ (1 — Bo)(VI(W,))? (Second moment: gradient variance)
,\ my N (% i

=M™ 5= Bias-corrected
My = j Uy T (Bias-corrected)

~

Ty By ~ 0.9, By ~ 0.999, € ~ 108
Wit = W . 1 , B2 :
t+1 t « \/’E—l» £

[Kingma et al,, ICLR'15] Adam: A method for stochastic optimization

Learning Rate Tuning

model gets stuck in false

néeeH rainivag teRlpfium

. Good learning rate

Regularization &
Data Augmentation

Over-and Underfitting

Underfitted Appropriate

Source: Deep Learning by Adam Gibson, Josh Patterson, O‘Reily Media Inc., 2017

Over-and Underfitting

Training/ Validation curve

— - Training error
Underfitting zone| Overfitting zone

- (Generalization error

Optlmal Capac1ty Credits: Deep Leaming. Goodfellow et al.

Capacity

Over-and Underfitting

Training/ Validation curve

r

Underfitting zone

Overfitting zone

Train

How can we
prevent our model

— Geney from overfitting?

™

J

|
Regularization

Optimal Capacity

Capacity

Credits: Deep Leaming. Goodfellow et al.

Regularization
* Loss function L(y,9,w) = Y1~ (¥; — ¥i)? + AR(w)

* Regularization techniques

L2 regularization Add regularization
L1 regularization term to loss function

Dropout

Early stopping

Regularization Example
* Input: 3 features x = [1,2,1]

* Two linear classifiers that give the same result:

w; = [0,0.9,0] Ignores 2 features

w,=10.15,0.75,0.15] Use all features

Regularization Example (L2)

* Loss function L(y,y,w) = ?zl(xiwji — yl-)z + AR(w)

* L2regularization R(w) = ||w|5 = X7, w!

R(w;) =0+ 0.9%24+0=0.81

R(w,) = 0.15% + 0.75% + 0.15% =/ 0.6075 | Minimization

Promotes weight
uniformity

x = [1,2,1],w, = [0,0.9,0], w, = [0.15,0.75,0.15]

Regularization Example (L1)

* Loss function L(y,y,w) = ?zl(xiwji — yl-)z + AR(w)

* Liregularization R(w) = [|w]|; = XL Iw;l
R(Wl) — 0 + 09 + 0 = 09 Minimization

enforces sparsity

R(w,) = 0.15 + 0.75 + 0.15 = 1.05

x = [1,2,1],w, = [0,0.9,0], w, = [0.15,0.75,0.15]

Regularization: Effect (L1)

* Dog classifier takes different inputs

Furry
\ _ L1 regularization

Has two evyes #
YeSf— o . | encourages the model

- 7 WA to rely on only a few
Has a tail — £ F 4 7

/ | » key features
Has paws / A

Has two ears

Regularization: Effect (L2)

* Dog classifier takes different inputs

Furry ~

L2 regularization
| leverages dll
N informationto

/ . 48 « influence model
learning

Has paws //

Has two ears”

Has two eyes

Has atail —

Data Augmentation: Motivation

Google e

All Images Videos WS hopping More Settings Tools

- 4 < e K — _e |
-2 . ‘ ’)ﬁs . : \Kgfp/ 22 :i ’ﬁ " ,';“4 :-..L:f”f‘*w

Cute And Kittens Clipart Drawing

Appearance

Cute Baby

M R

White Cats And Kit

llHlumination

Data Augmentation

* A dassifier has to be invariant to a wide variety of transformations
* Augmentation: simulating plausible transformations
@ Libraries: torchvision.transforms, Kornia, Albumentations

Horizontal Vertically +45 Rotation -45 Rotation Blur

Noise added Darker Grayscale Crop

Augmented Images

Valid & Plausible Transformations for Data Augmentation
Any operation that does not alter the original label

Original Digit 6 180° Rotated Digit 6

o
e
o
]
o

Light H

augmentation

Macenke

Vahadane augmentation

Data Augmentation: Advanced (Mixup & Variants)

&= Azi+ (1= N)zj

Image =i 7 /\
Original
N 5;
[1.0, 0.0]

Label vi samples

o Image =

/\ MixUp —
\: g
\ >

4 [0.6,0.4] LabelV
Image II }\ Cat Dog

y

, ! Mixup Cutout Cutmix
Label vJ [0.0,1.0] — . :
g =My 4 (1= Ay

Mixup: Beyond Empirical Risk Minimization

Data Augmentation: Advanced (RandAugment)

ShearX

Magnitude: 17

ShearX

Magnitude: 28

Original ShearX

AutoContrast

AutoContrast

AutoContrast

transforms = [

"Identity’, ’AutoContrast’, ’'Equalize’,
"Rotate’, ’Solarize’, ’'Color’, ’'Posterize’,
"Contrast’, ’'Brightness’, ’Sharpness’,

" ShearX’, ’ShearY’, ’'TranslateX’, ’"TranslateY’]

def randaugment (N, M) :
"""Generate a set of distortions.

Args:
N: Number of augmentation transformations to
apply sequentially.
M: Magnitude for all the transformations.

nnn

sampled_ops = np.random.choice (transforms, N)
return [(op, M) for op in sampled_ops]

Figure 2. Python code for RandAugment based on numpy.

RandAugment: Practical automated data augmentation with a reduced search space

Vision Benchmarks,
ResNet, BatchNorm &
Transfer Learning

Key Datasets as Benchmarks for Image Classification

e Example datasets:

O MNIST (handwritten digits), 1990s-today: 60,000 images
© CIFAR 10 & CIFAR 100, 2009: ~60,000 images
O ILSVRC (ImageNet-1K), 2009: 1.2 million training images, 1000 categories

CIFAR - 10

==l - BN -

el TP

Tml NES ¥ ERE ImageNet- 1K
PECHNERE P coopems s

S SR :
LSRRGS =

. o N ¢ e ‘25]
WAL O MELER S ey mogeNet- 21K

Eﬂubﬁi 52 Y, I i LAION- 400M

CNN Architectures: Accuracy vs. Complexity

Inception-v4

Xception
ResNet-101 ResNet-152

ResNet-50 ' .
enseNet-121 VGG-16 VGG-19

ResNet-34

MobileNeTv2
MobileNet-v1

1 ResNet-18
00’

GooglLeNet
ENet
P fd-MobileNet

BN-NIN
ShuffleNet

X
>
O
©
—
=
(U]
[v]
@©
o
Q
(]
|_

95M 125M - 155M

SqueezeNet
BN-AlexNet

AlexNet

2'0 3'0
Operations [G-Ops]

Residual Networks (ResNets)

Plain Net
X

\ 4

Weight Layer

Any stack of
two layers RelU »
Weight Layer

ReLU

\ 4

H(x)

2016

Deep Residual Learning for Image Recognition

Residual Net
e

v

Weight Layer

F(x) ReLU

4

Weight Layer
|

RelLU

7

Hx)=F (x) +x

ResNets

Skip Connection

X3 conv, et

3conv, 256, /2 |
256
X conv,Sgl‘Z,/i i '."u.
512
512 |
x3cony, 512 |

[3x3cony, 512

3x3

| 3x3
L 7

ﬂq] et
[38 conv,512_
T
\
R ’

3x3
T
L

©
=1
B
wv)
U
i
.
[}
>
©
i
<
)

Why is this model important?
o Frequently used today

o Skip connections and use of batch normalization

o Use of global average pooling instead of FC layers
1 x 1 x Depth

Depth vs. Performance

dashed: train
solid: test

ResNet-20

ResNet-32

ResNet-44
==ResNet-56
==ResNet-110

20-layer

plain-32

plain-44
— plain-56
_ 0 1
iter. (1e4) iter. (1e4)

CIFAR-10 Experiments

Batch Normalization

Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift

Sergey loffe
Christian Szegedy
Google, 1600 Amphitheatre Pkwy, Mountain View, CA 94043

Reduces “internal covariate shift”

ining

Tra

Input Distribution

Layers need to continually adapt
to the newer input distributions.

ining

Tra

Input Distribution

Abstract

Training Deep Neural Networks is complicated
by the fact that the distribution of each layer's
inputs changes during training, as the parame-
ters of the previous la; change. This slows
down the training by requiring lower learning
rates and careful parameter initialization, and
makes it noto sly hard to train s with
saturating nonlinearities. We refer to this phe-
nomenon as internal covariate shift, and ad-
dress the problem by normalizing layer inputs.
Our method draws its strength from making nor-
malization a part of the model architecture and
performing the normalization for each training
mini-batch. Batch Normalization allows us to
use much higher learning rates and be less care-
ful about initialization, and in some cases elim-
inates the need for Dropout. Applied to a state-
of-the-art image c! ication model, Batch
malization achieves the same accuracy with 14
times fewer training steps, and beats the original
model by a si nt margin, Using an ensem-
ble of batch-normalized networks, we improve
upon the best published result on ImageNet clas-
sification: reaching 4.82% top-5 test error, ex-
ceeding the accuracy of human raters.

minimize the loss

N
O = arg I'Igl z £(x;,0)

where x; .y is the training data set. With SGD, the train-
ing proceeds in steps, at each step considering a mini-
batch x; _ , of size m. Using mini-batches of exampl
as opposed to one example at a time, is helpful in se
Fmt‘ the gradient of the loss over a mini-batch
is an estimate of the gradient over the
quality improves as the batch size in-
Second, computation over a mini-batch can
ient than m computations for individual ex
ples on modern computing platforms.

While stochastic gradient is simple and effective, it requires
careful tuning of the model hyper-parameters, specifically
the learning rate and the initial parameter values. The train-
ing is complicated by the fact that the inputs to

are affected by the parameters of all preceding layers — so
that small changes to the network parameters amplify as
the network becomes deeper.

The change in the distributions of layers’ inputs presents
a problem because the layers need to continuously adapt
to the new distribution. When the input distribut
learning system changes, it is said to experience covq
ate shift (Shimodaira, 2000). This is typically hapd

Batch Normalization

Standard Network

Reduces “internal covariate shift”

Normalizes activations batch-wise;
fully differentiable for backprop

Batch Normalization (Fully Connected Version)

Input: x : N X D - Per-feature
. | mean, shape is D

A 4 4

)2 Per-feature
std, shape is D

Normalized x,
Shape is N x D

v v Y

(mini-batch size) 22

D (num of features)

Batch Normalization (Fully Connected Version)

mean, shape is D

N
Input: x : N X D 1 = %in’j Per-feature
i=1

A 4 4

N

1 9 Per-feature
E Tij — Kj)

N (s J

std, shape is D
i=1
By o Lig = Hj Normalized x,
1,7

0.72, 4+ e Shape is Nx D

Problem: What if zero-mean, unit
variance is too hard of a constraint?

Batch Normalization (Fully Connected Version)

Input: x : N X D e Per-feature
| mean, shape is D

2 Per-feature
std, shape is D

Learnable scale and

shift parameters: (Ti; — 1)

Vel § L % B Normalized x,
’ Shape is NxD

Output,
Shape is NxD

Learning 7 =0,
[= 1 will recover the y, . —~.3, . 4 3.
identity function!

Batch Normalization : Test-Time

Input: x : N X D - Per-feature
. | mean, shape is D

Learnable scale and . N)2 Per-feature

shift parameters: Hi)" std, shape is D

v gD o “i,]) Normalized x,
’ Shape is N x D

Output,
Shape is NxD

Learning 7 =0,
3 = i will recover the Vi
identity function!

Batch Normalization : Test-Time

(Running) average of
InpU'l': &£ i N X D ILL] — values seen during Pel‘-feCIfUI‘e

training mean, shape is D

Learnable scale and 5 (Running)averageof po. feqture
;= values seen during

shift parameters: 7 raining std, shape is D

Y 5 ; A o Lig — My Normalized x,

/0]2_ + e Shape is NxD

A Output,
ViZi,; + B; Shape is NxD

Batch Normalization for ConvNets

Batch Normalization for Batch Normalization for

fully-connected networks convolutional networks
(Spatial Batchnorm, BatchNorm?2D)

X: N x D X: NxCxHxW

Normalize | Normalize | Il

u,o0: 1 x D U,o: 1xCx1lxl

Yy,B: 1 x D Y,B: 1xCx1lxl
y = yY(x-u)/o+p y = Y (x-u)/o+p

Group Norm

Instance Norm

M H

U
nuuuul

Other Normalizations
Batch Norm

Transfer Learning: Fine-Tuning for a New Task

(vgegl6, ResNet50, dataset: Oxford
Flowers 102

Pre-trained model Task specific)

Replace O
_p. . Feature
classification .
extraction
head

Model capable of
identifying 102
Flowers

Transfer Learning

Optimized learning with scarce data, freeze early layers, replace final
classification layers

Optionally fine-tune deeper layers if the new domain differs significantly

Versatile Applications
of CNNs

224 x 224 x3 224 x 224 x 64

12 TXTXE
7114 x 14 x 512

aaE

(—) convolution+ReLU
max pooling
fully nected+RelLU
softmax

Object Detection

Semantic Segmentation: Fully Convolutional Networks

o Network designed with only convolutional layers, handling arbitrary input sizes

o Uses downsampling and upsampling operations (tfranspose convolutions)

5 Recent approaches like U-Net and other encoder-decoder designs follow a similar
paradigm
Med-res: Med-res:
D, x H/4 x W/4 D,x H/4 x WI4 74
- Low-res: e
D,x H/4 x Wi/4

Input: High-res: High-res: ekt
3xHxW D, x H/2 x W/2 D, x H/2 x W2 Hx W

torch.nn.ConvTranspose2d

You Only Look Once (YOLO)

You Only Look Once:
Unified, Real-Time Object Detection

Joseph Redmon*, Santosh Divvala*, Ross Girshick¥, Ali Farhadi*f
University of Washington™, Allen Institute for AI*, Facebook AI Research¥
http://pjreddie.com/yolo/

Abstract

We present YOLO, a new approach to object detection.
Prior work on object detection repurposes classifiers to per-
form detection. Instead, we frame object detection as a re-
gression problem to spatially separated bounding boxes and
associated class probabilities. A single neural network pre-
dicts bounding boxes and class probabilities directly from
full images in one evaluation. Since the whole detection
pipeline is a single network, it can be optimized end-to-end
directly on detection performance.

Our unified architecture is extremely fast. Our base
YOLO model processes images in real-time at 45 frames
per second. A smaller version of the network, Fast YOLO,
processes an astounding 155 frames per second while
still achieving double the mAP of other real-time detec-

prs. Compared to state-of-the-art detection systems, YOLO

1. Resize image.
2. Run convolutional network.
3. Non-max suppression.

Figure 1: The YOLO Detection System. Processing images
with YOLO is simple and straightforward. Our system (1) resizes
the input image to 448 x 448, (2) runs a single convolutional net-
work on the image, and (3) thresholds the resulting detections by
the model’s confidence.

methods to first generate potential bounding boxes in an im-
age and then run a classifier on these proposed boxes. After
classification, post-processing is used to refine the bound-
ing boxes, eliminate duplicate detections, and rescore the
boxes based on other objects in the scene [13]. These co
plex pipelines are slow and hard to optimize because g

S x S grid on input

g boxes + confidence

p

Class probability map

Final detections

Prior Two-Step Object Detection Approaches

classifier

Rol pooling

proposals
s with CNN features

ped region aeroplane? no. .
4 N - Region Proposal Networ

. i / 8

v | . ! feature maps
‘ T NNy S lperson? yes. | ’

N4 :
4. Classify
regions

conv layers

[Girshick et al., CVPR’14] Rich feature hierarchies for accurate object detection and semantic segmentation
[Ren et al., NIPS’'15] Faster R-CNN: Towards real-time object detection with region proposal networks

YOLO Grid-Based Prediction

Object probability

x coordinate
y coordinate

width

height

one-hot class 1

one-hot class 2

image grid one-hot class 3
(n x n) anchors

Prediction Post-Processing in YOLO

1- Remove the low probability bounding boxes

2- Apply non-max suppression (NMS)

Prediction Post-Processing in YOLO

1- Remove the low probability bounding boxes
2- Apply non-max suppression (NMS)

Limitations: struggles with small objects/crowded scene

YOLOvV3, v4,v5,v7, and YOLOV8 add multi-scale predictions & stronger backbones.

Vision Transformer

Output
Probabilities

[Softmax |

Add & Norm
Forward
Add & Norm

Multi-Head
Attention

Add & Norm

Masked
Multi-Head Multi-Head
Attention Attention

Positional
& e Encoding
Input Output
Embedding Embedding
2 O 1 7 Inputs Outputs

Attention Is All You Need (shifted right)

AN IMAGE IS WORTH 16X16 WORDS:
TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Alexey Dosm'itskiy"‘. Lucas Beyer*, Alexander Kolesnikov*, Dirk Weissenborn®,
Xiaohua Zhai*, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby*'f
*equal technical contribution, fequal advising
Google Research, Brain Team

{adosovitskiy, neilhou y}@google.com

ABSTRACT

While the Transformer architecture has become the de-facto standard for natural
language processing tasks, its applications to computer vision remain limited. In
vision, attention is either applied in conjunction with convolutional networks, or
used to replace certain components of convolutional networks while keeping their
overall structure in place. We show that this reliance on CNNs is not necessary
and a pure transformer applied directly to sequences of image patches can perform
very well on image classification tasks. When pre-trained on large amounts of
data and transferred to multiple mid-sized or small image recognition benchmarks
(ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent
results compared to state-of-the-art convolutional networks while requiring sub-
stantially fewer computational resources to train.'

I INTRODUCTION

Self-attention-based architectures, in particular Transformers (Vaswani et al., 2017), have become
the model of choice in natural language processing (NLP). The dominant approach is to pre-train on
a large text corpus and then fine-tune on a smaller task-specific dataset (Devlin et al., 2019). Thanks
to Transformers’ computational efficiency and scalability, it has become possible to train models of
unprecedented size, with over 100B parameters (Brown et al., 2020; Lepikhin et al., 2020). With the
models and datasets growing, there is still no sign of saturating performance.

In computer vision, however, convolutional architectures remain dominant (LeCun et al., 1989;

etal., 2012; He et al., 2016). Inspired by NLP suc s, multiple works try combining
CNN-like architectures with self-attention (Wang et al., 2018; Carion et al., 2020), some replacing
the convolutions entirely (Ramachandran et al., 2019; Wang et al., 2020a). The latter models, while
theoretically efficient, have not yet been scaled effectively on modern hardware accelerators due to
the use of specialized attention patterns. Therefore, in large-scale image recognition, classic ResNet-
like architectures are still state of the art (Mahajan et al., 2018; Xie et al., 2020; Kolesnikov et al.,
2020).

\.

Output
Probabilities

*_Softmax

Add & Norm

Feed
Forward

Add & Norm

<

f_" Add & Norm |

Feed
Forward

Multi-Head

Attention

—

f_>| Add & Norm |

Multi-Head
Attention

Masked
Multi-Head

) é
Add & Norm _Je=

Attention

) S

A

i)
I

J

Positional
Encoding

D

Input
Embedding

Output
Embedding

I

Inputs

T

Outputs
(shifted right)

Positional
Encoding

' | \
~>| Add & Norm |

Feed
Forward

r

\

~>| Add & Norm |

Multi-Head
Attention

Positional
Encoding By Francisco Castillo Carrasco (towards data science)

Input
Embedding

T

Inputs

Input Embedding

Feed
Forward

Add & Norm

Multi-Head
Attention

Positional e

l
& O000 0000
Sequence of Tokens

Encoding

Image Patching

height

I patch size

A\ 4

width

Number of Patches x c x p1 x p2

— e N | =
L R e e o] ==
[Ramy| | |
= |

Pixel 1 -
Pixel 1 -
Pixel 1 -

Pixel 2 -

Pixel p1p2 -
Pixel p1p2 -

Pixel p1p2 -

Pixel 2 -

Pixel 2 -

ve)

FC Layer

Number of Patchesx c xp1 x p2 Number of Patches x (c x p1 x p2)

D = Dimension at which transformer layers will operate

Number of Patches x D

Pixel 1-R

Pixel 1- G ‘

Pixel 1-B

Pixel 2-R

Pixel 2 -G ‘
Pixel 2- B % FC Layer)

v

Pixel p1p2-R

Pixel p1p2-G ‘

Pixel p1p2 -

ve)

Number of Patchesx c xp1 x p2 Number of Patches x (c x p1 x p2) Nx D

D = Dimension at which transformer layers will operate

N = Number of patches (size of the sequence of tokens)

The CLS Token

Extra learnable
embedding [cls token]

Position
Embedding

Source: A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization

Add & Norm

The Positional
Embedding

Embedding

Fixed vs. Learned Positional Embeddings
That's patch #4

S NN R ENET]
ML M EEEEN . N EEEEEANI RN RN RN RN NN NN NNNR NN NN RNRNRNERERERRERER

s |

JE_Em Spe_ NN EE FEEEENC

i

il

'
|
el

Source: Amirhossein Kazemnejad's Blog

That's patch #16

Fixed vs. Learned Positional Embeddings

Pos. Emb. Default/Stem Every Layer Every Layer-Shared

No Pos. Emb. 0.61382 N/A N/A
1-D Pos. Emb. 0.64206 0.63964 0.64292
2-D Pos. Emb. 0.64001 0.64046 0.64022
Rel. Pos. Emb. 0.64032 N/A N/A

Table 8: Results of the ablation study on positional embeddings with ViT-B/16 model evaluated on
ImageNet 5-shot linear.

2020

An Image is Worth 16X 16 Words

Patch Embedding

Add & Norm

Feed
Forward

Add & Norm Patches

Convert Image into Sequence of

Multi-Head
Attention

Add CLS token to sequence of
Patches

Input
Embedding

Add Positional Information to

Patches

Attention
Mechanism and
Transformer
Encoder

Add & Norm
Feed
Forward

Add & Norm

Multi-Head
Attention

Positional e

Encoding
Input
Embedding

Inputs

Attention

Block used in transformers that fulfils two responsibilities:

* Identifying what is relevant to an input out of everything in its context

* Add more meaning to the representation of an entity by using the representation
of its context

But why ?

season season

Attention

Block used in transformers that fulfils two responsibilities:

* Identifying what is relevant to an input out of everything in its context

* Add more meaning to the representation of an entity by using the representation
of its context

But why ?

Show’s last season | hate rainy season

Attention

Block used in transformers that fulfils two responsibilities:

* Identifying what is relevant to an input out of everything in its context

* Add more meaning to the representation of an entity by using the representation
of its context

But why ?

Show’s last season | hate rainy season

Chicken didn’t cross the road because it was Chicken didn’t cross the road because it was

Attention

Block used in transformers that fulfils two responsibilities:

* Identifying what is relevant to an input out of everything in its context

* Add more meaning to the representation of an entity by using the representation
of its context

But why ?

Show’s last season | hate rainy season

Chicken didn’t aross the road because it was Chicken didn’t cross the road because it was

happy on this side itself

too wide

™

o1)3

Attention

Attention

D)

iimsaae

o e
— T Nl

B i

el
mit]

"L f::_;zz'[\:

Determining Relevance

==III-I-I-
D x Head Dimension
Query : Input representation. We are trying to quantify how much is every context item relevant to this representation
Key : Context representation. Used to quantify relevance to the query representation
Value : Context representation which will be used to add understanding of relevant context into the input

Determining Relevance

ead Dimension Head Head Head Head
Dimension Dimension Dimension Dimension

D x Head Dimension

Determining Relevance

Head Dimension Head Head Head Head
Dimension Dimension Dimension Dimension

N

v
: \/Eh =3 Head Dimension
Softmax (@1 %) o3 044>

D x Head Dimension

Context-Aware Input Updating

Head Dimension Head Head Head Head
Dimension Dimension Dimension Dimension
%k %k E 3 E 3

] 9 a3 o %!

.{/

D x Head Dimension

Context-Aware Input Updating

Head Dimension Head Head Head Head
Dimension Dimension Dimension Dimension
%k %k E 3 E 3

] 9 a3 o %!

Context Representation for
Patch 1

D x Head Dimension

Head Dimension

Context-Aware Input Updating (For ALL Patches)

EEEE

0 T

EEEN

T

4 x Head Dimension |====

LTI TT (11]

EEEEEAEEEE 1

EEEERYEEEE R
EEEEEEEEEE

Head Dimension x 4

J 87
,J
dDi . Similarity between
D x Head Dimension 4x Head Dimension)' query representation
i 6 of ith patch
and
key representation
of jth patch

Context-Aware Input Updating (For ALL Patches)

D x Head Dimension

4 x Head Dimension

D
l*-l
i
i

4 x Head Dimension

4x4

Context Representation for
ALL Patches

4 x Head Dimension

Multi Head Attention

There can be multiple factors of relevance

Each head has unique weight matrices, despite the uniform color representation

mmlal mmlal mmlal ilwun Emﬂl

Each D x Head Dimension

4 x Head Dimension

4x4 4x4 4x4 4x4 4x4 4x4 4x4 4x4

* * * * * * * *

4 x Head Dimension

HH"IEI HH"IEI BH’IEI II!!iiii

1\

Each D x Head Dimension

EEL YlV AnmER
_ V‘I

Context Context Context
Representation for Representation for Representation for
L B N _ B B BN B _§ §N _§}I
ALL Patches ALL Patches ALL Patches
for HEAD 1 for HEAD 2 for HEAD 8
4 x Head 4 x Head 4 x Head
Dimension Dimension Dimension

4 x (8 * Head Dimension) 9 Output FC Layer 4xD

Add & Norm

Feed
Forward
Self Attention Block

: [Add & Norm |
Project from D

to get QKV for each head Multi- Head
Attentnon

Compute Scaled Dot
Product Attention

Compute Weighted Value, | VT
Concatenation of heads, PObItIOﬂdI

Project back to D EﬂCOding

— Input
Embedding

Inputs

Transformer Block

LayerNorm

Multi Head Attention

LayerNorm

A
I

Patch Embedding Block

FCLayer

M

GELU

|

FC Layer

Classification Scores
I -1

[ITTTTITT]
*

FC Layer

" .

CLS

X Layers

Transformer
Block

Patch Embedding Block

Attention Map Visualization

Source: Exploring Explainability for Vision Transformers
2020 (Jacob Gildenblat)

Quantifying Attention Flow in Transformers

Position Embedding Visualization

| | | | | | | | | | | | Position Embedding 1
/l | | | | | | | | | | | Position Embedding 2

LITTTTTTTITIT]
Position Embedding i \

Position Embedding 196

Position Embedding Visualization

Position embedding similarity

 EIEEELIRIe N
>

L AL R L RL N LN AN
i e w M e mE w Eee e
e BE - NCE N LR RN RN
ﬁlﬂl.i*.lﬂl

6 : R =
CHAWNANNTE

2 3 4 5
Input patch column

w

ol
Cosine similarity

=
@]
_
e
o
(©
0_4
4+
]
o
=

References

Books & Core Reading

o Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. - Chapter
6: Deep Feedforward Networks

Courses & Tutorials

o Alexander Amini. Introduction to Deep Learning, MIT 6.5191
o Ali Farhadi. Introduction to Deep Learning, CSE 490G1/599G1
o Daniel Cremers. Introduction to Deep Learning, IN2346

o Sergey Levine. Designing, Visualizing, and Understanding Deep Neural Networks, UC
Berkeley, CS W182/282A

References

Key Papers

O

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image
Recognition. CVPR.— Introduces ResNet

loffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift. ICML.—> BatchNorm

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-
Time Object Detection. CVPR.- Original YOLO paper

Dosovitskiy, A., et al. (2021). An Image Is Worth 16x16 Words: Transformers for Image
Recognition at Scale. ICLR.-> Vision Transformers (ViT)

Vaswani, A., et al. (2017). Attention Is All You Need. NeurlPS.— Foundational Transformer

References

Additional Useful Links

o €S25: Transformers United V4 (YouTube)
9

o €S231n: Convolutional Neural Networks for Visual Recognition
%

o The lllustrated Transformer by Jay Alammar
- https://jalammar.github.io/illustrated-transformer/

Data Augmentation Libraries:

TorchVision, Kornia, Albumentations
— Check their official documentation and GitHub repositories

https://www.youtube.com/playlist?list=PLoROMvodv4rNiJRchCzutFw5ItR_Z27CM
https://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/understanding-cnn/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91: Vision Transformer
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136

