

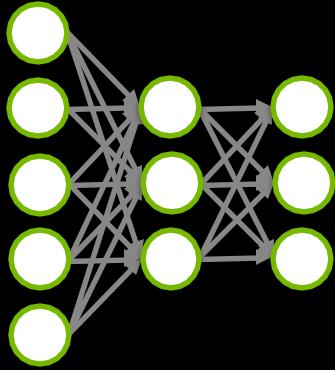
AN INTRODUCTION TO DEEP LEARNING

Behzad Bozorgtabar

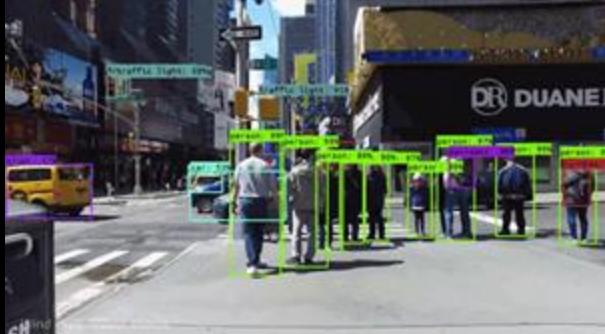
Image Analysis and Pattern Recognition, EE-451

EPFL, LTS5

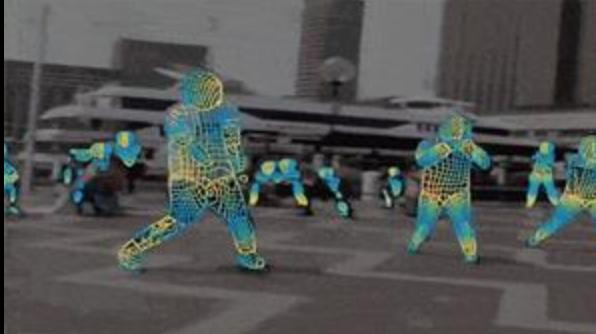
Deep Learning for Real World Problems



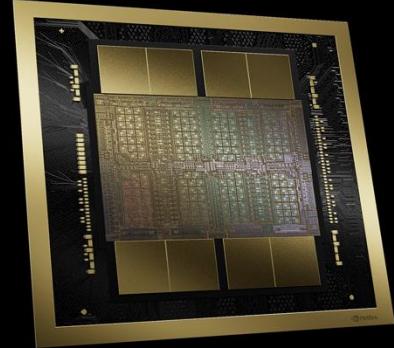
Object Detection



Human Understanding



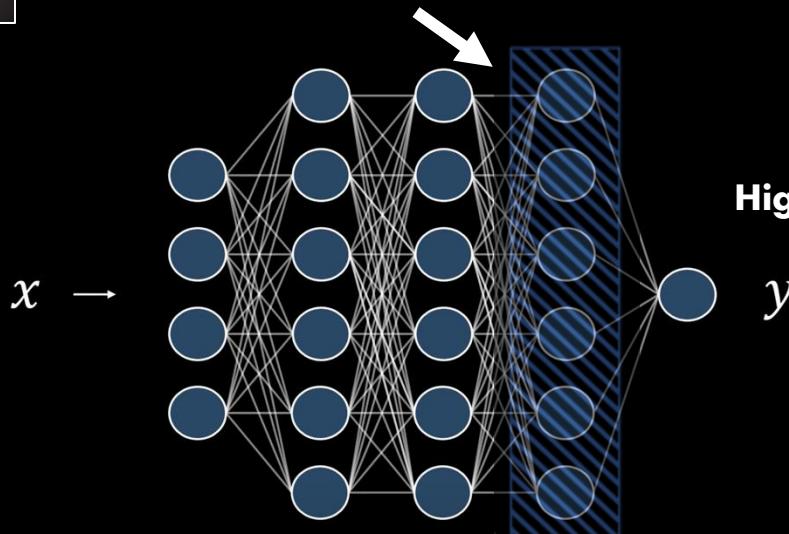
Autonomous Driving



Datapoint 1 **Representation 1**

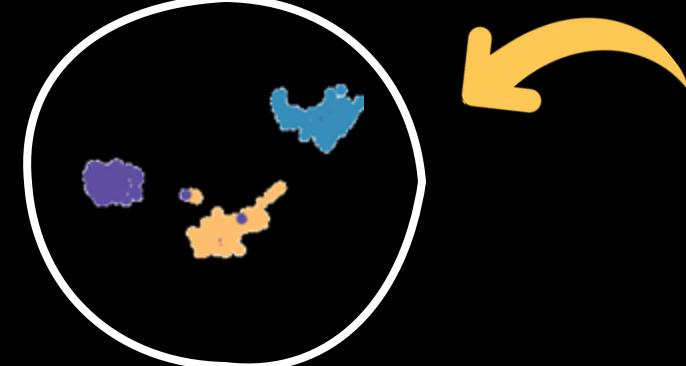
Datapoint 2 **Representation 2**

Datapoint 3 **Representation 3**



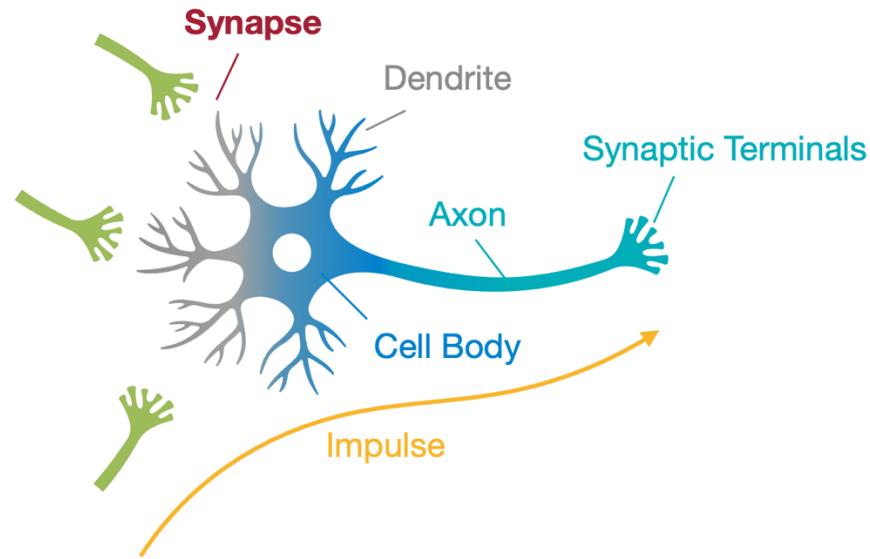
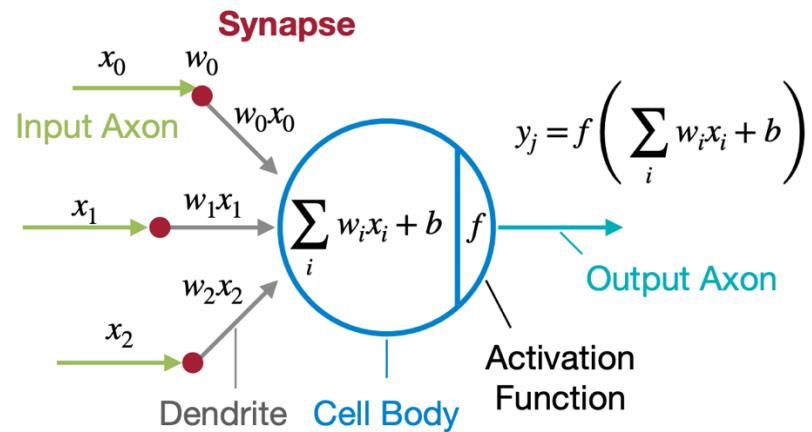
Representation learning

Embedding Space

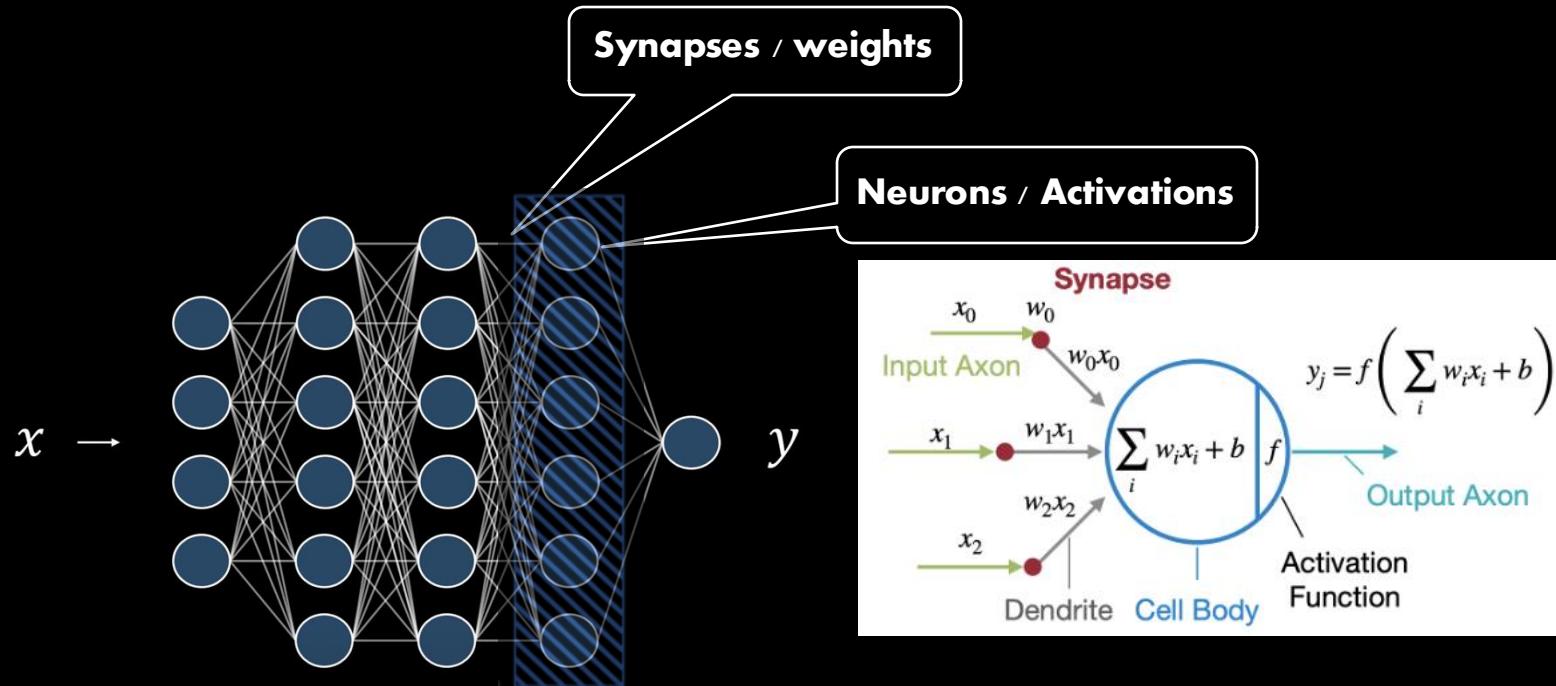


High-level representations are typically nuisance-invariant

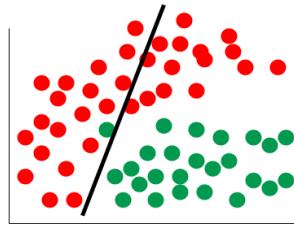
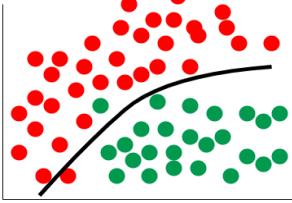
Neuron and Synapse



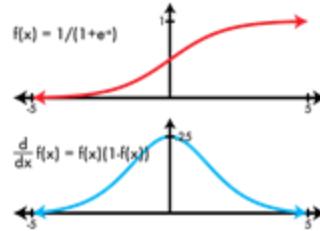
Neural Network



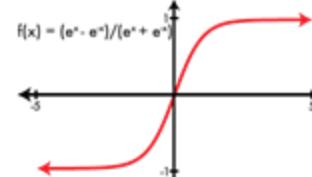
Activation Functions



logistic

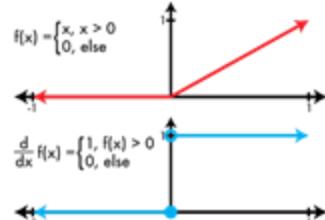


tanh

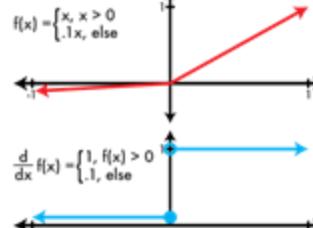


Good ones

REctified Linear Unit (ReLU)



Leaky RELU



Fully Connected (Dense) Layer

Each output neuron is connected to all previous layer neurons

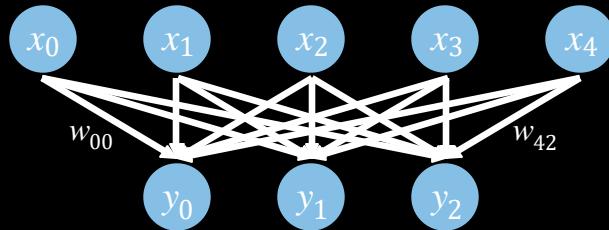
- **Shape of Tensors:**

Input Features \mathbf{X} : $(1, c_i)$

Output Features \mathbf{Y} : $(1, c_o)$

Weights \mathbf{W} : (c_o, c_i)

Bias \mathbf{b} : $(c_o,)$



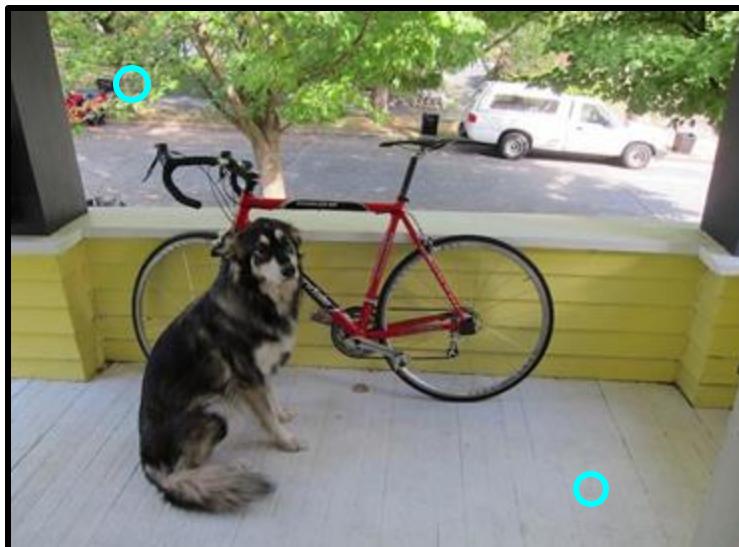
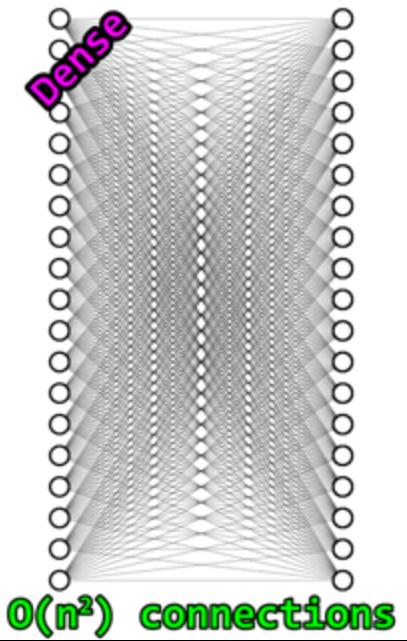
$$\begin{matrix} c_i \\ \vdots \\ 1 \end{matrix} \times \begin{matrix} c_o \\ \vdots \\ 1 \end{matrix} = \begin{matrix} c_o \\ \vdots \\ 1 \end{matrix}$$

$\mathbf{X} \quad \mathbf{W}^T \quad \mathbf{Y}$

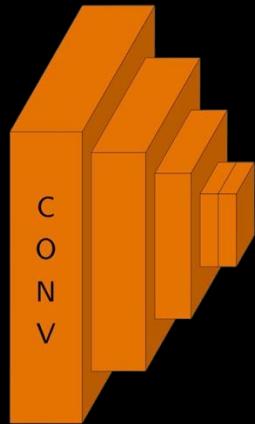
Scaling Issue in Fully Connected Layers

The number of weights grows quadratically with the number of neurons

Complexity of handling image data



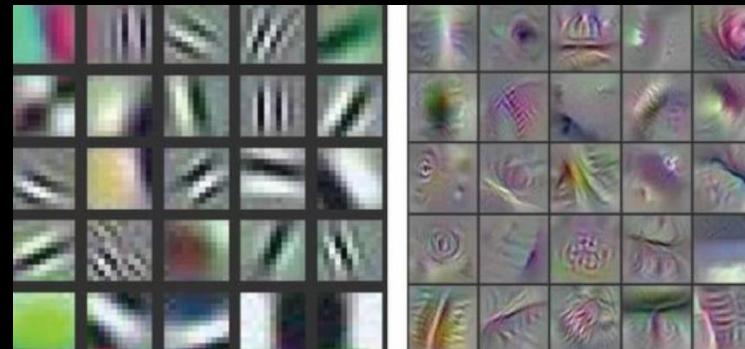
Convolutional Neural Networks and Intuition



Intuition Behind Convolution Layer (1)

Restricting the degrees of freedom

- A structured layer to process a small region with fewer weights (many useful features are local)



Layer 1:
edge detectors?

Layer 2:
beak? wing?

Intuition Behind Convolution Layer (1)

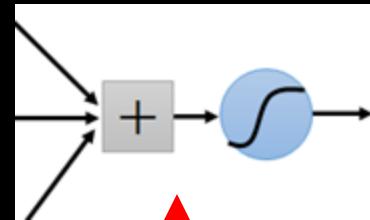
Restricting the degrees of freedom

- A structured layer to process a small region with fewer weights (many useful features are local)

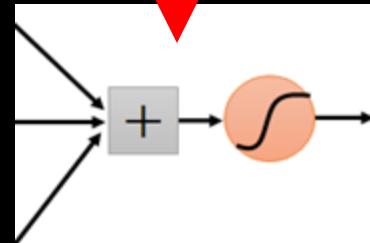
Intuition Behind Convolution Layer (2)

Restricting the degrees of freedom

- **Weight sharing:** using the same weights for different parts of the image



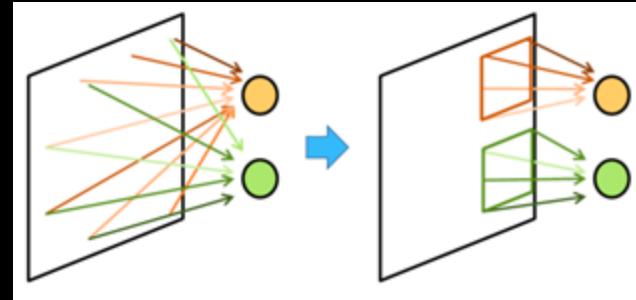
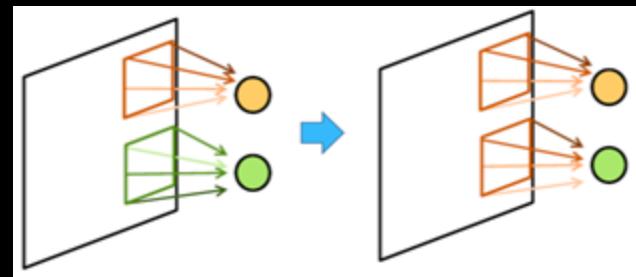
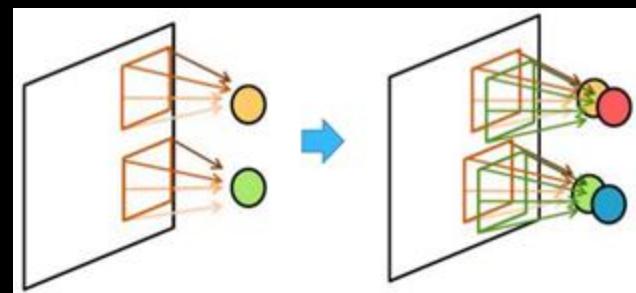
“upper-left beak” detector



“middle beak” detector

Transitioning from Fully Connected to Convolution Layer

- **Local Connectivity**
- **Weight Sharing**
- **Multiple Feature Detectors**



Connectivity Pattern: Fully Connected vs. Convolution Layer

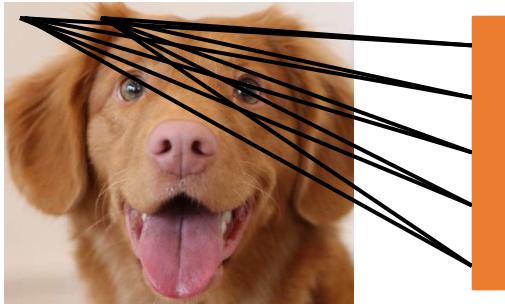
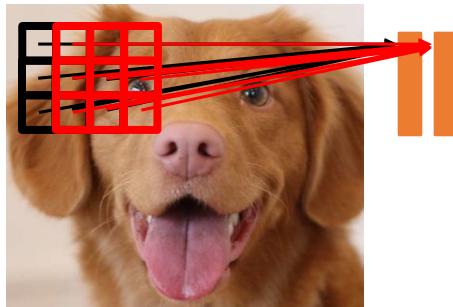


Image is $128 \times 128 \times 3 = 49,152$

First layer is 64-dim

FC layer

$$64 \times 49,152 \approx 3,000,000$$



Patch is $3 \times 3 \times 3 = 27$

First layer is 64-dim

Convolution layer

$$64 \times 27 = 1728$$

Convolutions?

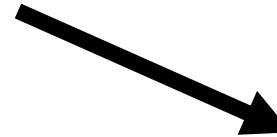
Input	Kernel	Bias	Output																														
<table border="1"><tr><td>1</td><td>2</td><td>3</td><td>4</td></tr><tr><td>5</td><td>6</td><td>7</td><td>8</td></tr><tr><td>9</td><td>10</td><td>11</td><td>12</td></tr><tr><td>13</td><td>14</td><td>15</td><td>16</td></tr></table>	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	<table border="1"><tr><td>0</td><td>-1</td><td>0</td></tr><tr><td>-1</td><td>5</td><td>-1</td></tr><tr><td>0</td><td>-1</td><td>0</td></tr></table>	0	-1	0	-1	5	-1	0	-1	0	<table border="1"><tr><td>5</td></tr></table>	5	<table border="1"><tr><td>11</td><td>12</td></tr><tr><td>15</td><td>16</td></tr></table>	11	12	15	16
1	2	3	4																														
5	6	7	8																														
9	10	11	12																														
13	14	15	16																														
0	-1	0																															
-1	5	-1																															
0	-1	0																															
5																																	
11	12																																
15	16																																

★ + =

Convolution on Images?

$\frac{1}{49}$

1x							
1x							
1x							
1x							
1x							
1x							
1x							
1x							



Filter Effects

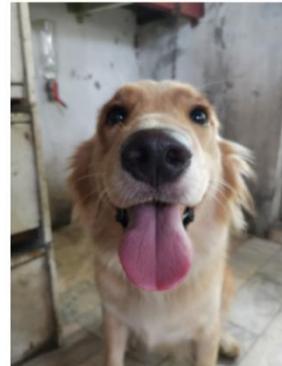
Input

Edge detection

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

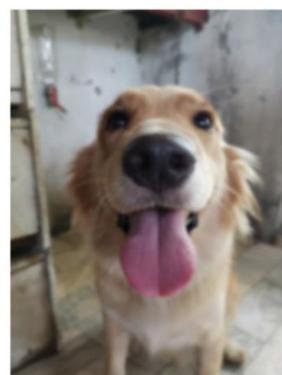
Sharpen

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$



Box mean

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$



Gaussian blur

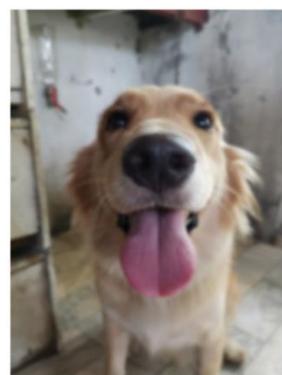
$$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

Filter Effects

Input

Edge detection

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$



Sharpen

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

Box mean

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Gaussian blur

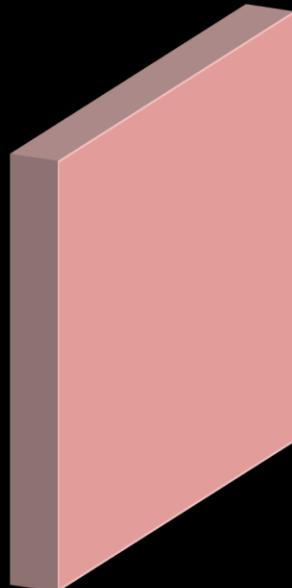
$$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

LET'S LEARN THESE FILTERS!

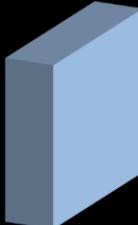
Convolutions on Volumetric Images

width height depth

image $32 \times 32 \times 3$



filter $5 \times 5 \times 3$



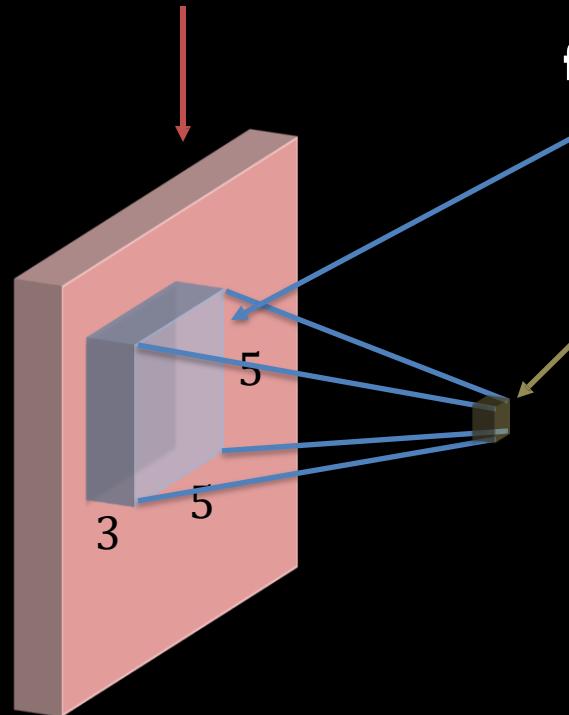
Depth dimension ***must*** match; i.e., filter extends the full depth of the input

Convolve filter with image
i.e., 'slide' over it and:
– Apply filter at each location
– Compute dot product

Images have depth: e.g., RGB \rightarrow 3 channels

Convolutions on Volumetric Images

32x32x3 image (X)



filter (weight tensor w)

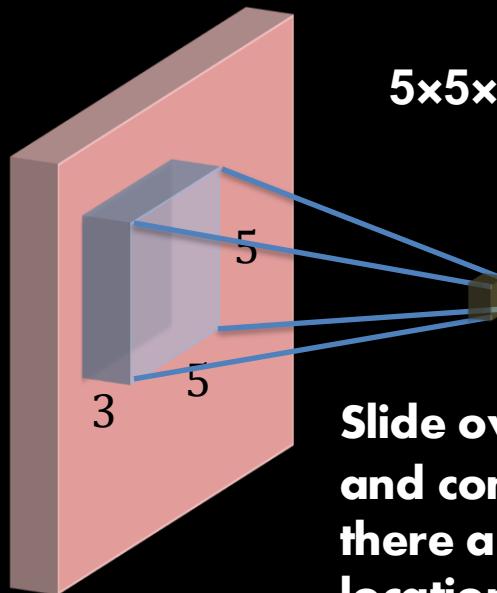
1 number at time:
equals to dot product between
filter weights w and x_i – th chunk
of the image. Here: $5 \cdot 5 \cdot 3 = 75$ -dim
+bias

$$z_i = w^T x_i + b$$

$(5 \times 5 \times 3) \times 1$ $(5 \times 5 \times 3) \times 1$ 1

Convolutions on Volumetric Images

32×32×3 image

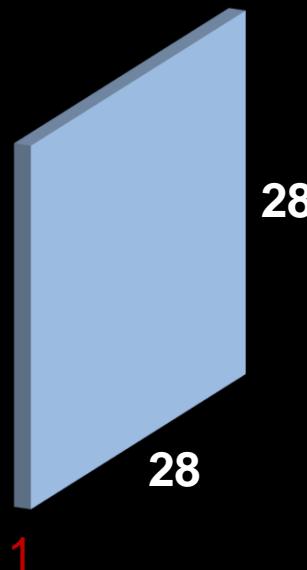


5×5×3 filter

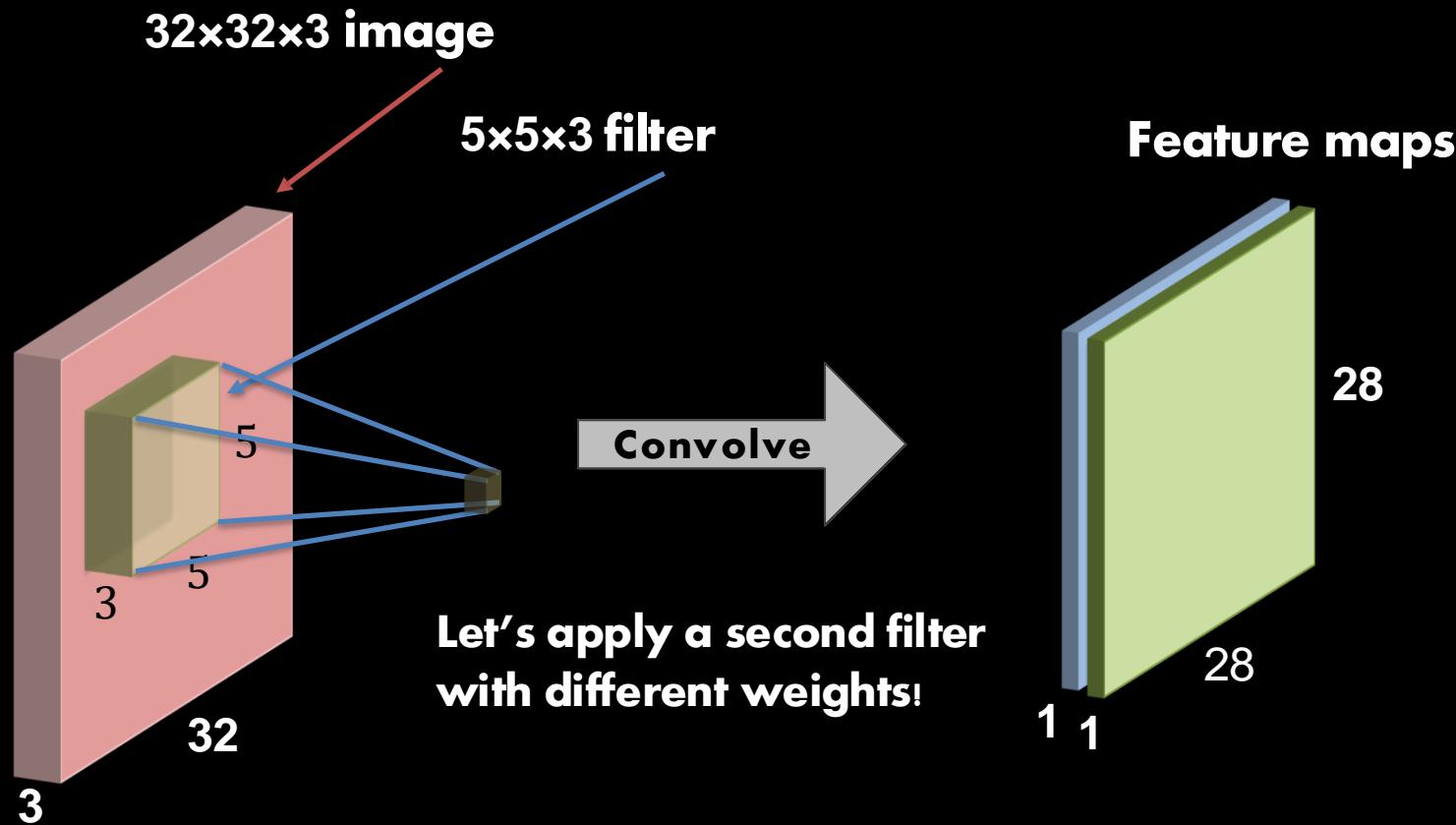
Convolve

Slide over all spatial locations x_i and compute all output z_i , there are 28×28 unique locations

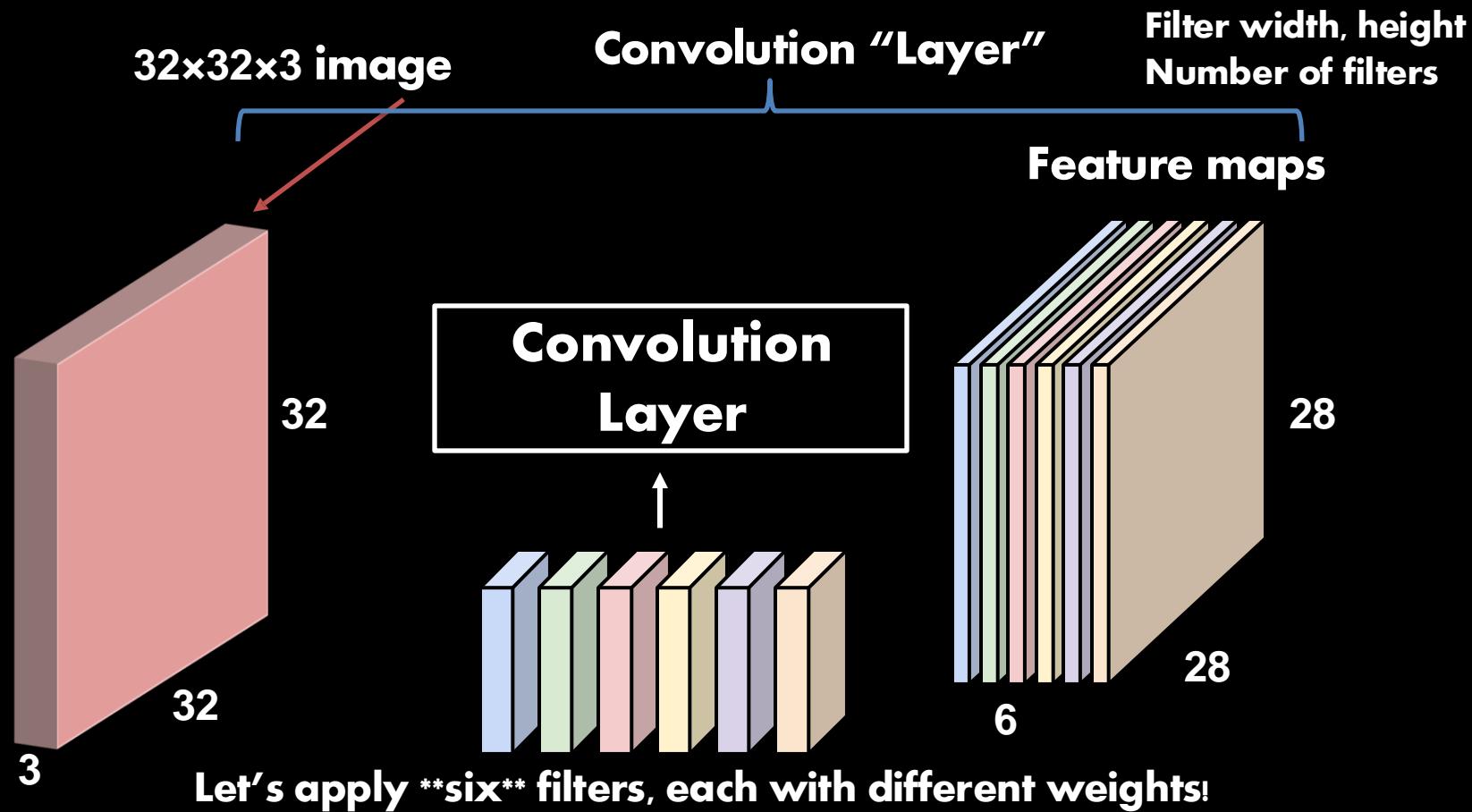
Activation map
(also feature map)



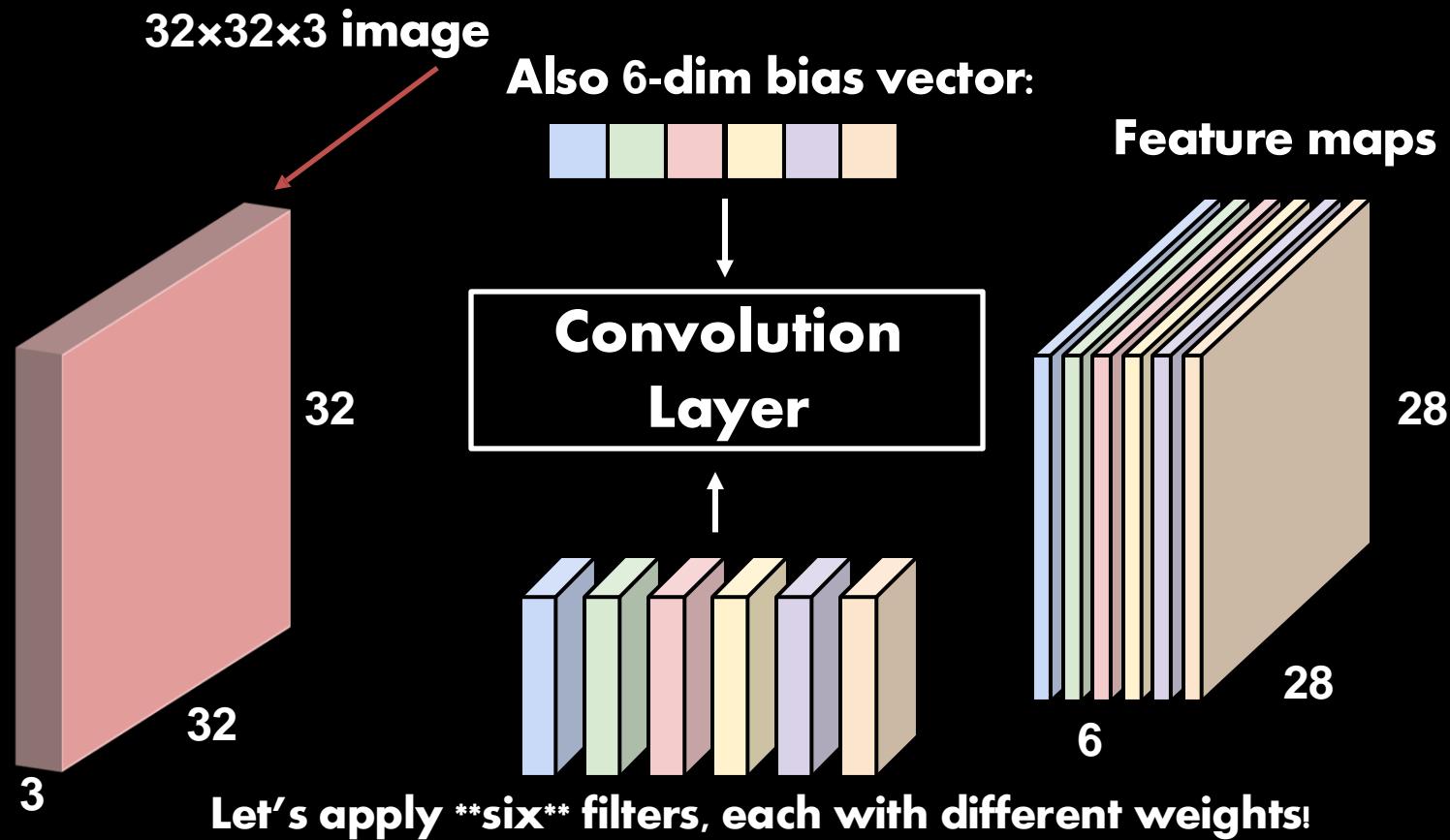
Convolutions on Volumetric Images



Convolution Layer



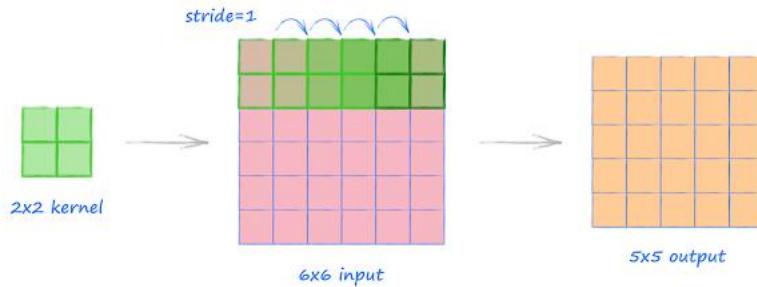
Convolution Layer



Stride

How far to move filter (kernel) between applications

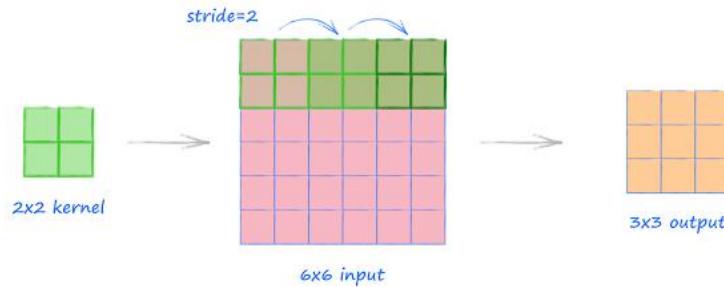
Increasing stride downsamples the image



Stride

How far to move filter (kernel) between applications

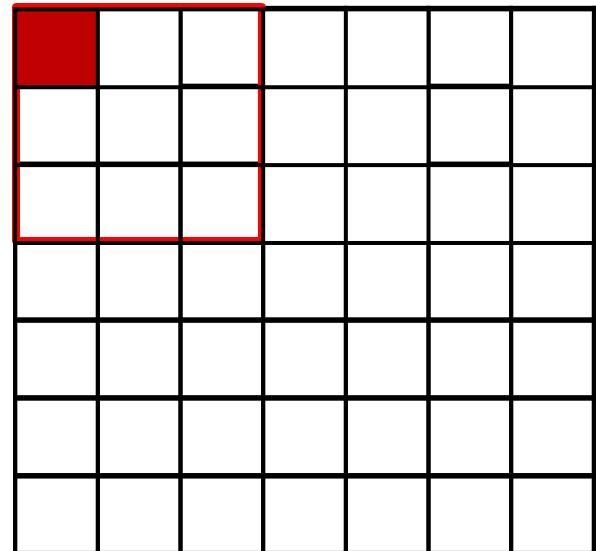
Increasing stride downsamples the image



Input: $N \times N$
Filter: $F \times F$
Stride: S
Output: $\left(\frac{N - F}{S} + 1\right) \left(\frac{N - F}{S} + 1\right)$

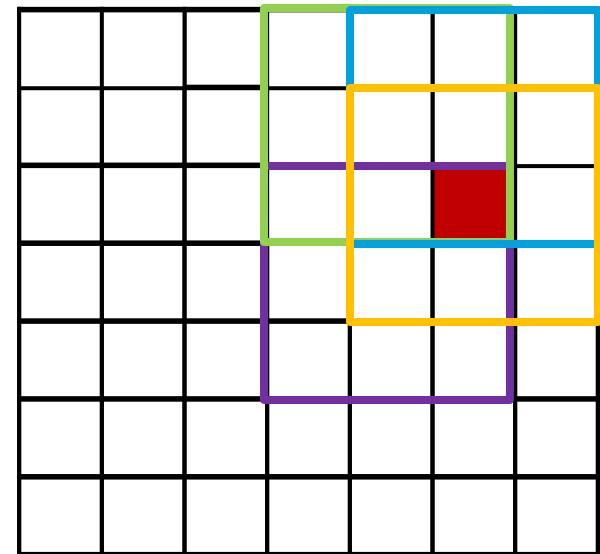
Padding

Convolutions have problems on edges



Padding

Convolutions have problems on edges



Padding

Convolutions have problems on edges

Pad: add extra pixels on images

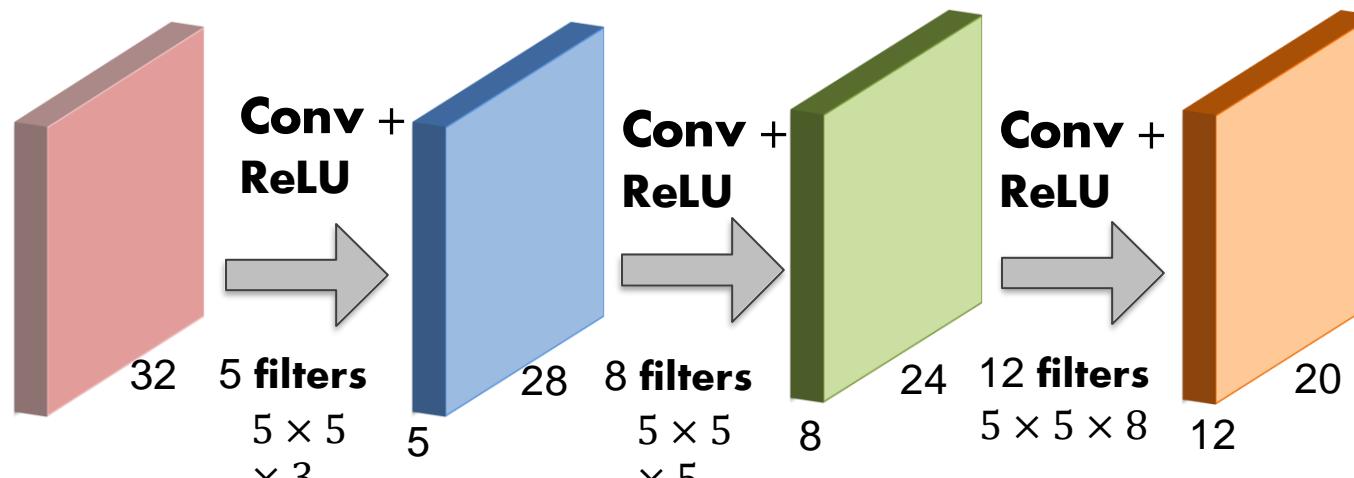
Image 7x7 + zero padding

Padding

Convolutions have problems on edges

Pad: add extra pixels on images

Padding maintains feature map dimensions after convolution



The spatial size would decrease too rapidly ($32 \rightarrow 28 \rightarrow 24 \rightarrow 20$)

Pooling Layer

Processing: pool values over a region of the feature map

Output: a reduced version of the feature map by a factor of the stride

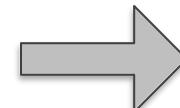
Pooling types: Max, Average

Most common: 2×2 maxpooling, stride of 2

Input feature map (single slice)

7	3	5	2
8	7	1	6
4	9	3	9
0	8	4	5

**2×2 maxpooling
and stride of 2**

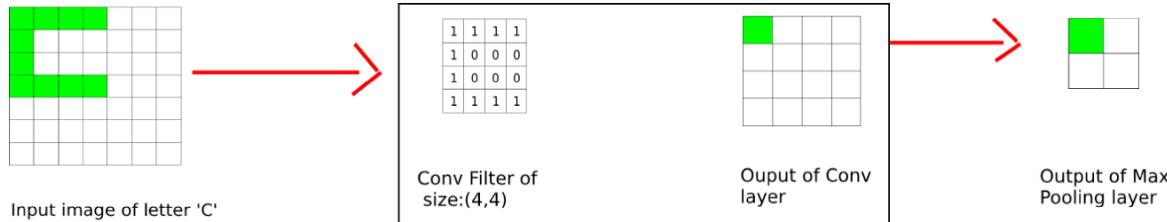


'Pooled' output

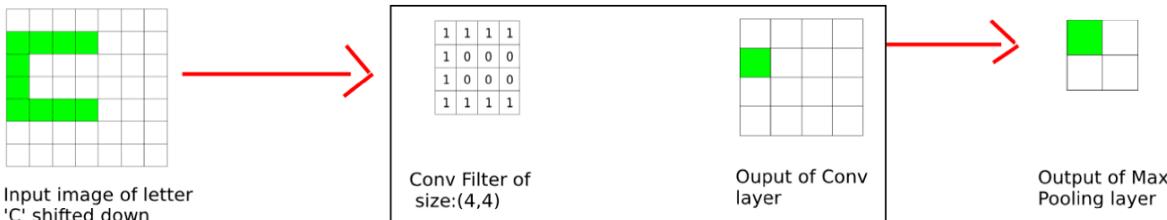
8	6
9	9

Pooling Layer

Introduces (small) translation invariance



Convolutional Layer

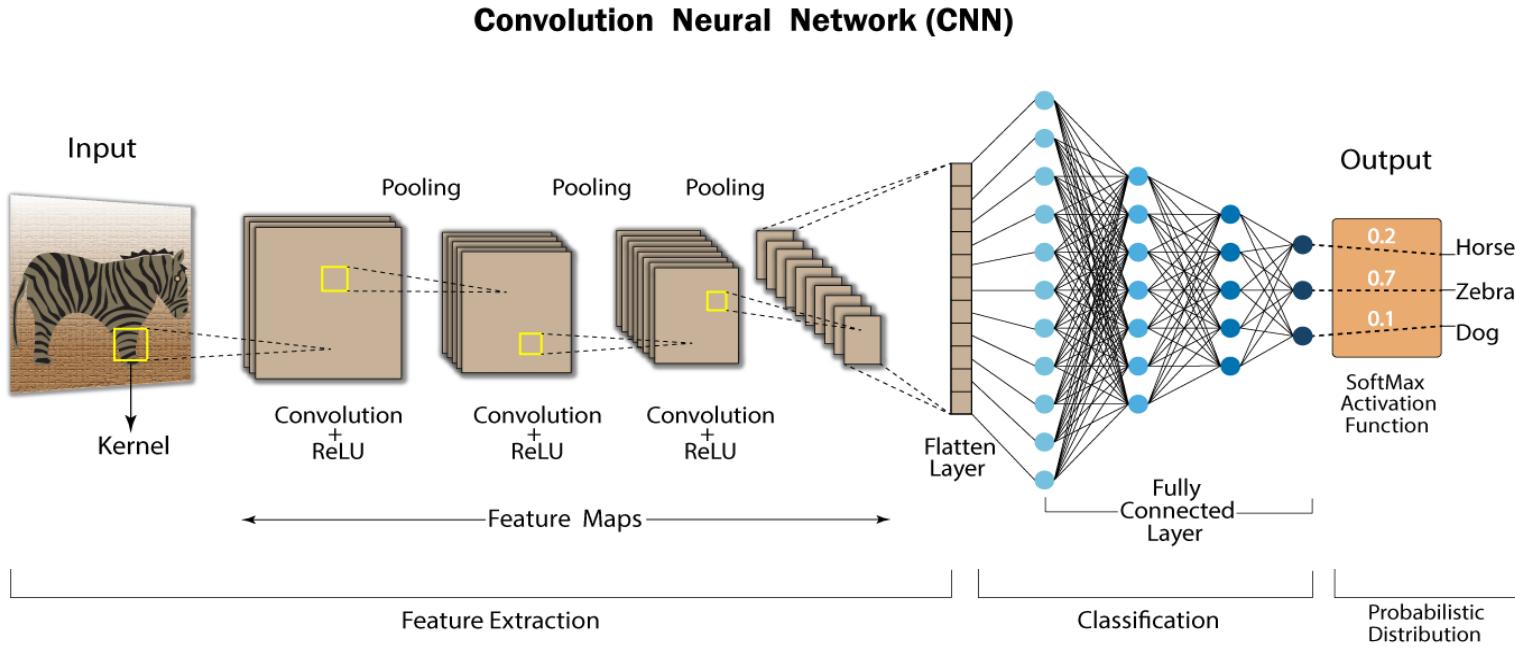


Convolutional Layer

CNN Prototype for Image Classification

Feature Extractor : Convolution+ ReLU activations+ Pooling (repeated)

Classification Head : Flattening→ FC Layers→Output Classification

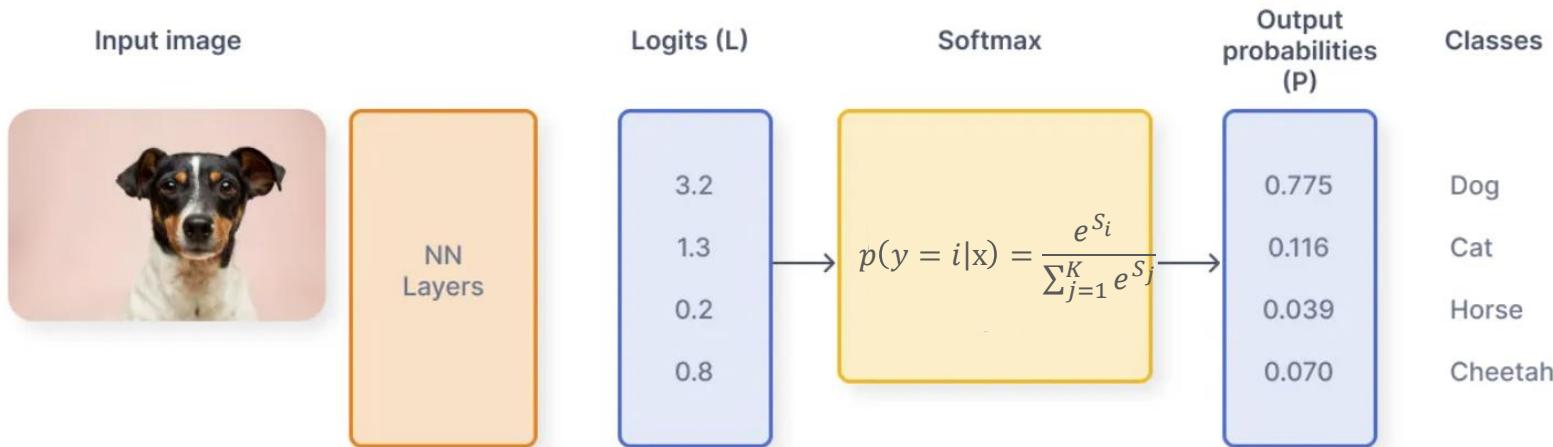


Softmax: Multi-Class Classification

Softmax: the normalized exponential function of all scores (logits)

- **x represents the input features (final layer)**
- **S_i is unnormalized score of class i (final layer)**

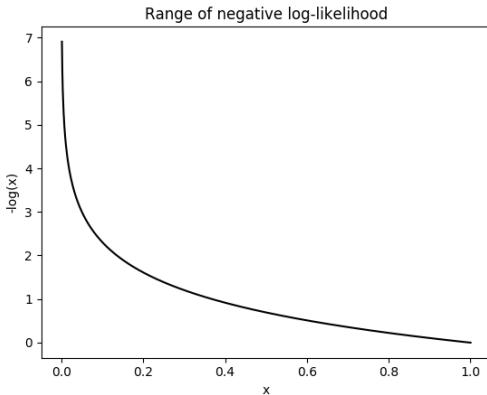
$$p(y = i|x) = \frac{e^{S_i}}{\sum_{j=1}^K e^{S_j}}$$



Cross-Entropy Loss for Multi-Class Classification

- y_i is the one-hot encoded label for class i
- p_i is the predicted probability of class i

$$\mathcal{L} = - \sum_{i=1}^K y_i \log(p_i)$$



cat	dog	horse
0.71	0.26	0.04
0.02	0.00	0.98
0.49	0.49	0.02

The correct class is highlighted in red

$-\log(a)$ at the correct classes

0.34
0.02
0.71

Total: 1.07

Cross-Entropy Loss for Multi-Class Classification

- y_i is the one-hot encoded label for class i
- p_i is the predicted probability of class i

$$\mathcal{L} = - \sum_{i=1}^K y_i \log(p_i)$$

The gradient of loss w.r.t. logit

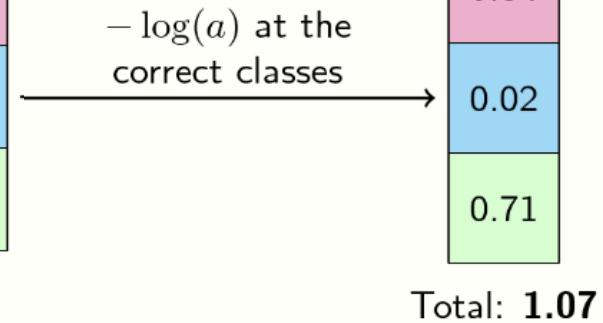
$$\frac{\partial \mathcal{L}}{\partial s_i} = p_i - y_i$$

For the correct class j ($y_j = 1$)

$$\frac{\partial \mathcal{L}}{\partial s_j} = p_j - 1$$

	cat	dog	horse
cat	0.71	0.26	0.04
dog	0.02	0.00	0.98
horse	0.49	0.49	0.02

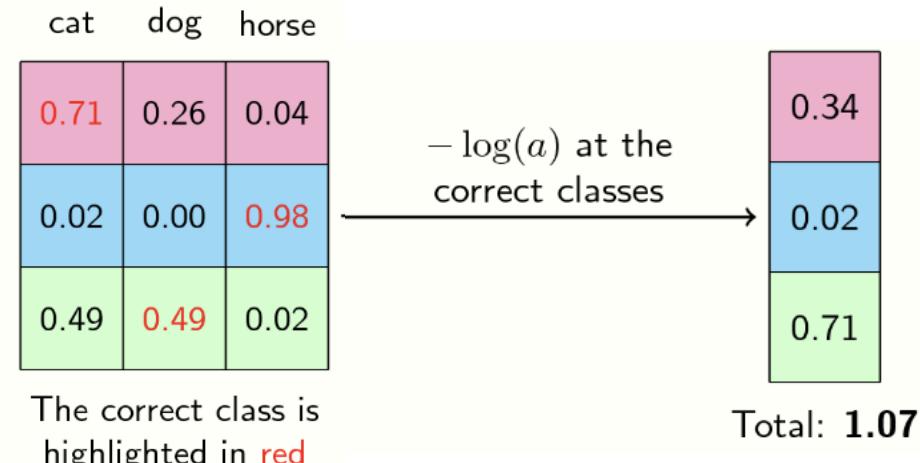
The correct class is highlighted in red



Cross-Entropy Loss for Multi-Class Classification

- $y_{n,i}$ is the actual label for the n -th sample for class i
- $p_{n,i}$ is the predicted probability for the n -th sample of class i
- N is the number of samples in a batch

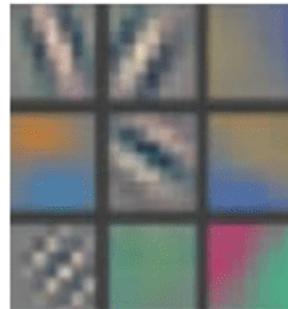
$$\mathcal{L}_{total} = -\frac{1}{N} \sum_{n=1}^N \sum_{i=1}^K y_{n,i} \log(p_{n,i})$$



CNN Learns Hierarchical Features

Patches from Input Image

Layer 1 Structure

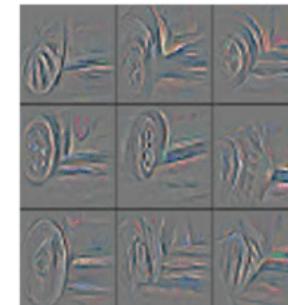


The first hidden layer learns to identify basic structural elements such as edges and color blobs

Patches from Input Image

CNNs learn hierarchical structure after several layers

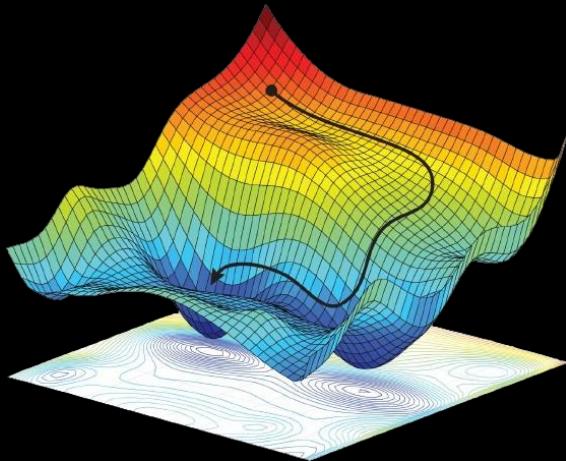
Layer 5 Structure



2014

Visualizing and Understanding Convolutional Networks

Optimizing Neural Networks



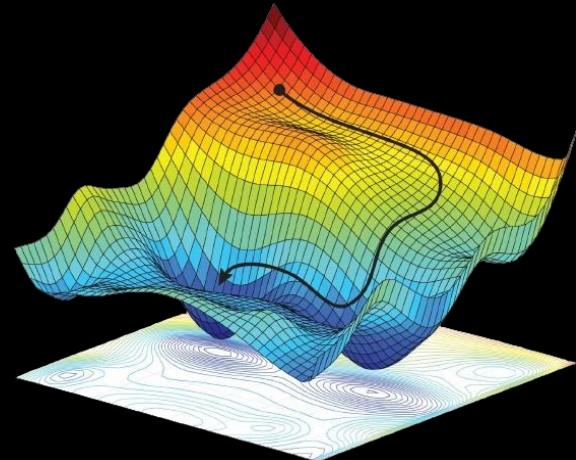
Loss Optimization

Finding network's parameters (weights) that achieve the lowest loss

$$W^* = \arg \min_W \frac{1}{n} \sum_{i=1}^n \mathcal{L}(f(x^{(i)}; W), y^{(i)})$$

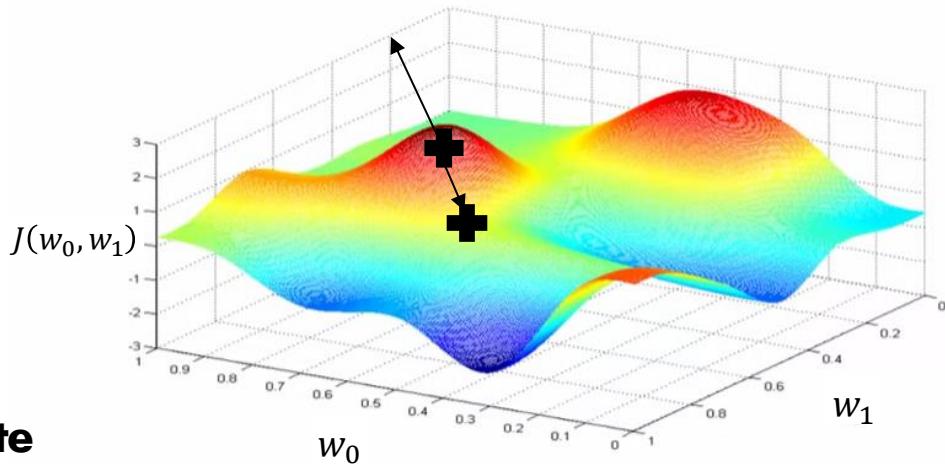
$$W^* = \arg \min_W J(W)$$

$$W = \{W^{(0)}, W^{(1)}, \dots\}$$



Loss Optimization

- **Randomly pick a point** (w_0, w_1)
- **Compute gradient**, $\frac{\partial J(W)}{\partial W}$
- **Take a small step in the opposite direction of the gradient**
- **Repeat this process until convergence**

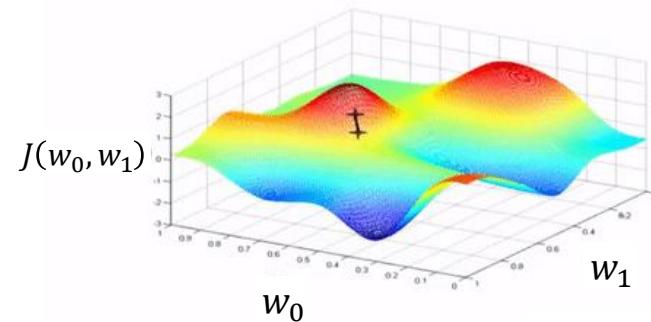


Mini-Batch Gradient Descent

- **Algorithm:**

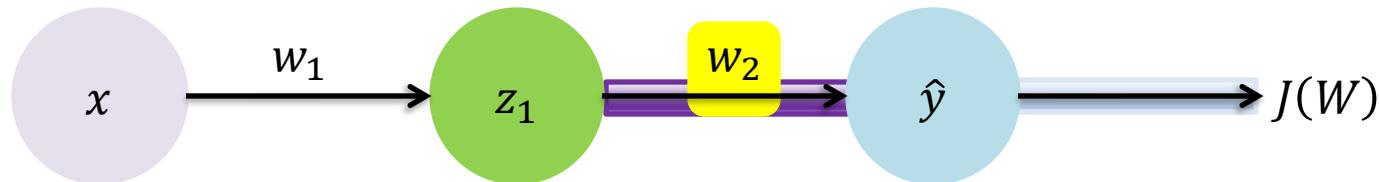
Use a suitable method (e.g., Xavier or He initialization) to ensure stable variance of activations and gradients.

- **Initialize weights randomly** $\sim \mathcal{N}(0, \sigma^2)$
- **Loop until convergence:**
- **Pick a mini-batch of B data samples**
- **Compute gradient**, $\frac{\partial J(W)}{\partial W} = \frac{1}{B} \sum_{k=1}^B \frac{\partial J_k(W)}{\partial W}$
- **Update weights**, $W \leftarrow W - \alpha \frac{\partial J(W)}{\partial W}$
- **Return weights**



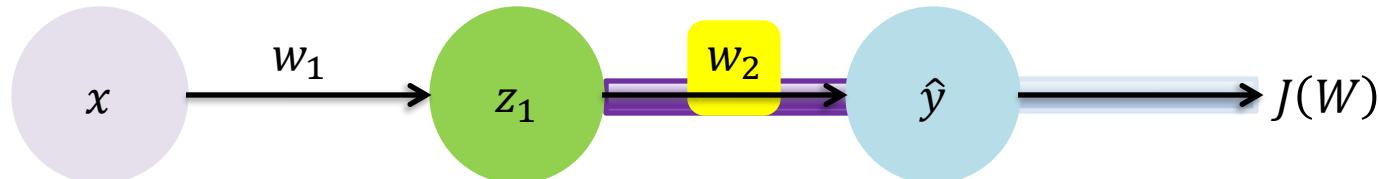
Better estimation of true gradient and fast to compute,
smoother convergence

Backpropagation: Chain Rule in Action



$$\frac{\partial J(W)}{\partial w_2} = .$$

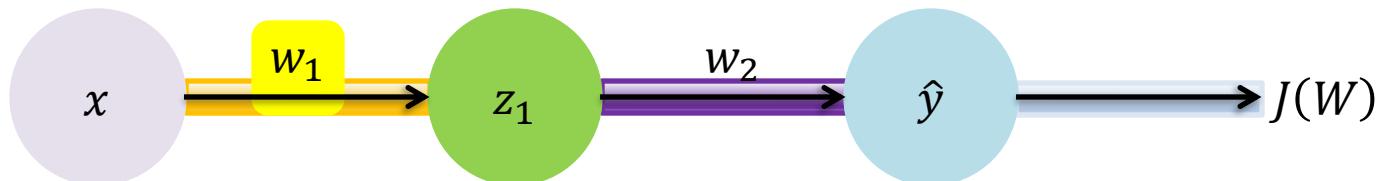
Backpropagation: Chain Rule in Action



$$\frac{\partial J(W)}{\partial w_2} = \underline{\frac{\partial J(W)}{\partial \hat{y}}} * \underline{\frac{\partial \hat{y}}{\partial w_2}}$$

Let's apply chain rule !

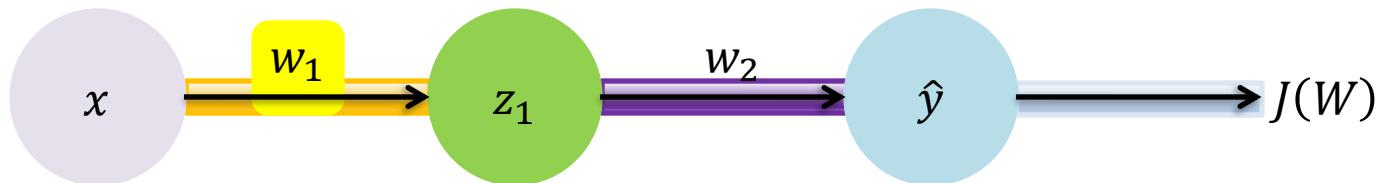
Backpropagation: Chain Rule in Action



$$\frac{\partial J(W)}{\partial w_1} = \underline{\frac{\partial J(W)}{\partial \hat{y}}} * \frac{\partial \hat{y}}{\partial w_1}$$

Apply chain rule

Backpropagation: Chain Rule in Action



$$\frac{\partial J(W)}{\partial w_1} = \underline{\frac{\partial J(W)}{\partial \hat{y}}} * \underline{\frac{\partial \hat{y}}{\partial z_1}} * \underline{\frac{\partial z_1}{\partial w_1}}$$

Gradient Dynamics in Deep Network Training

$$\frac{\partial J}{\partial w_1} = \frac{\partial J}{\partial h_n} * \frac{\partial h_n}{\partial h_{n-1}} * \frac{\partial h_{n-1}}{\partial h_{n-2}} * \dots * \frac{\partial h_2}{\partial h_1} * \frac{\partial h_1}{\partial w_1}$$

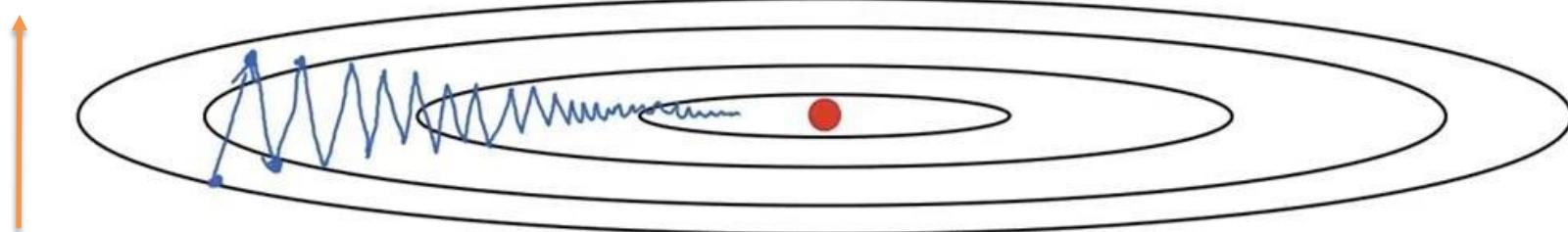
In most cases, there are two possible solutions:

- **We get zero if** $\left\| \frac{\partial h_i}{\partial h_{i-1}} \right\| < 1 \rightarrow \prod_{i=2}^n \frac{\partial h_i}{\partial h_{i-1}} \dots \text{Vanish!}$
- **We get infinity if** $\left\| \frac{\partial h_i}{\partial h_{i-1}} \right\| > 1 \rightarrow \prod_{i=2}^n \frac{\partial h_i}{\partial h_{i-1}} \dots \text{Explode!}$
- **We only get a reasonable answer if the numbers are all close to one**

Limitations of Gradient Descent + Alternatives

Challenges with Vanilla Gradient Descent:

- **Oscillations due to anisotropic curvature of the loss surface**
- **Slow convergence**



Source: A. Ng

We take multiple back and forth steps in this direction.

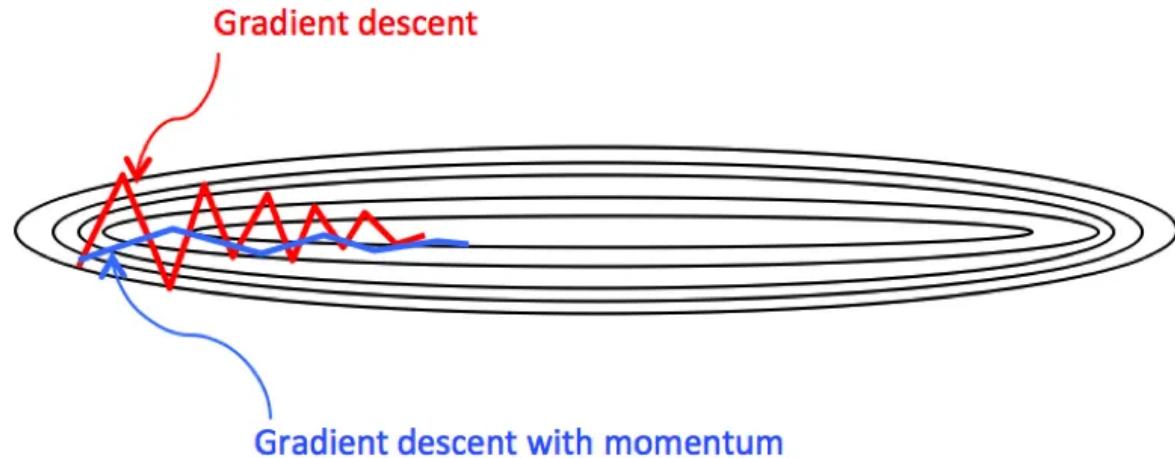
We'd ideally like to move faster in this direction

Limitations of Gradient Descent + Alternatives

Gradient Descent with Momentum:

- Smoother updates, dampens oscillations
- Speeds up convergence

$$v_t = \gamma v_{t-1} + \alpha \nabla J(W_t)$$
$$W_{t+1} = W_t - v_t$$



Limitations of Gradient Descent + Alternatives

Adam (Adaptive Moment Estimation) Optimizer:

- Combines momentum (first moment of gradients) with adaptive learning rates based on the second moment (squared gradients)
- Popular in deep learning due to its robustness

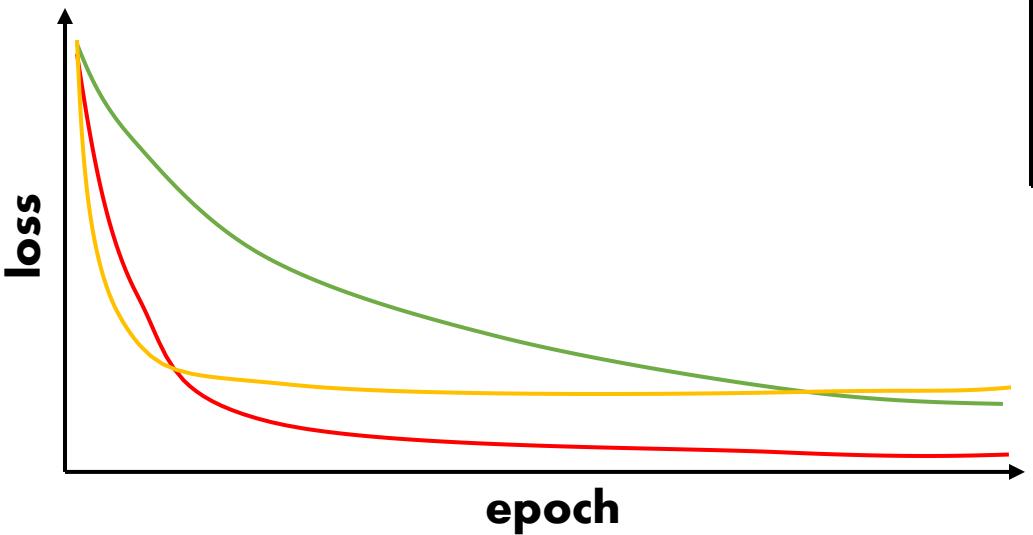
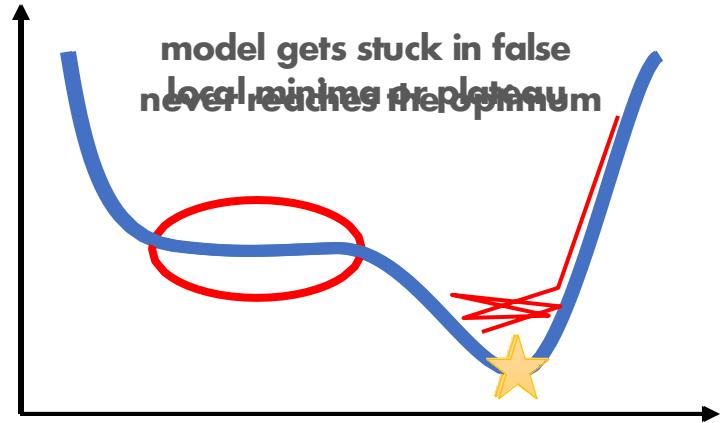
$$\hat{m}_t = \beta_1 \hat{m}_{t-1} + (1 - \beta_1) \nabla J(W_t) \quad \text{(First moment: gradient mean)}$$

$$\hat{v}_t = \beta_2 \hat{v}_{t-1} + (1 - \beta_2) (\nabla J(W_t))^2 \quad \text{(Second moment: gradient variance)}$$

$$\hat{m}_t = \frac{\hat{m}_t}{1 - \beta_1^t}, \quad \hat{v}_t = \frac{\hat{v}_t}{1 - \beta_2^t} \quad \text{(Bias-corrected)}$$

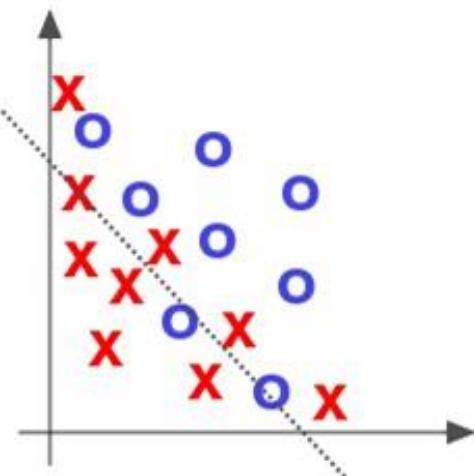
$$W_{t+1} = W_t - \alpha \cdot \frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon} \quad \beta_1 \approx 0.9, \beta_2 \approx 0.999, \epsilon \approx 10^{-8}$$

Learning Rate Tuning

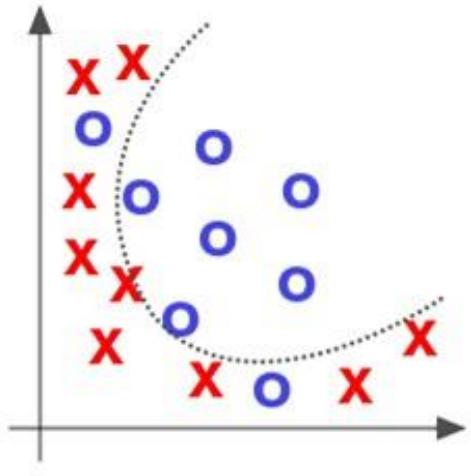


Regularization & Data Augmentation

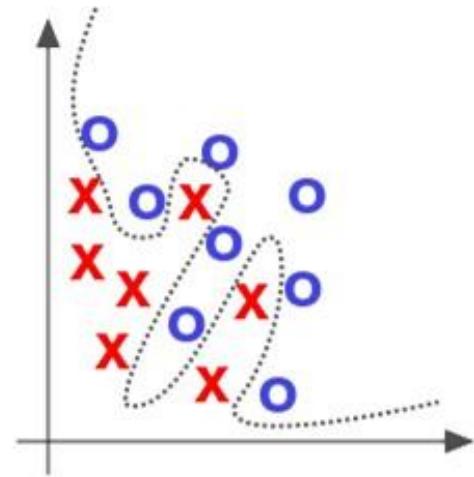
Over-and Underfitting



Underfitted



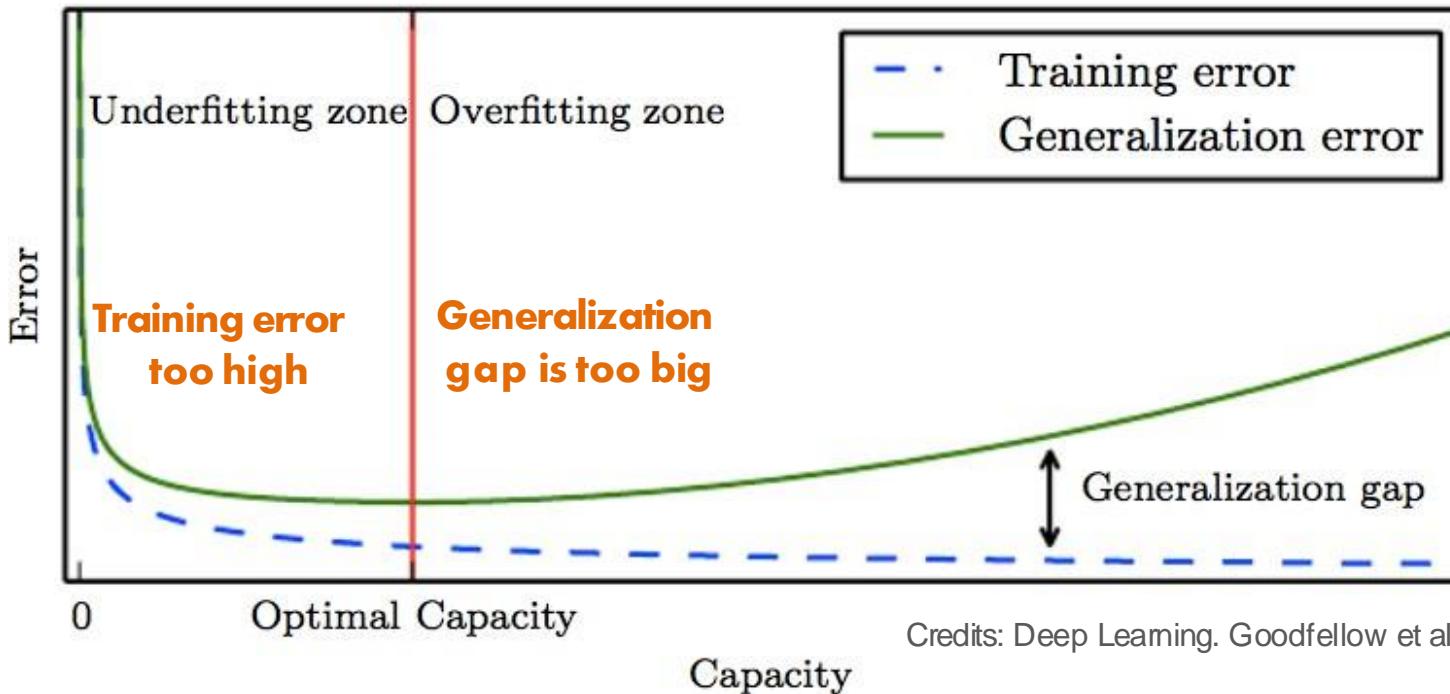
Appropriate



Overfitted

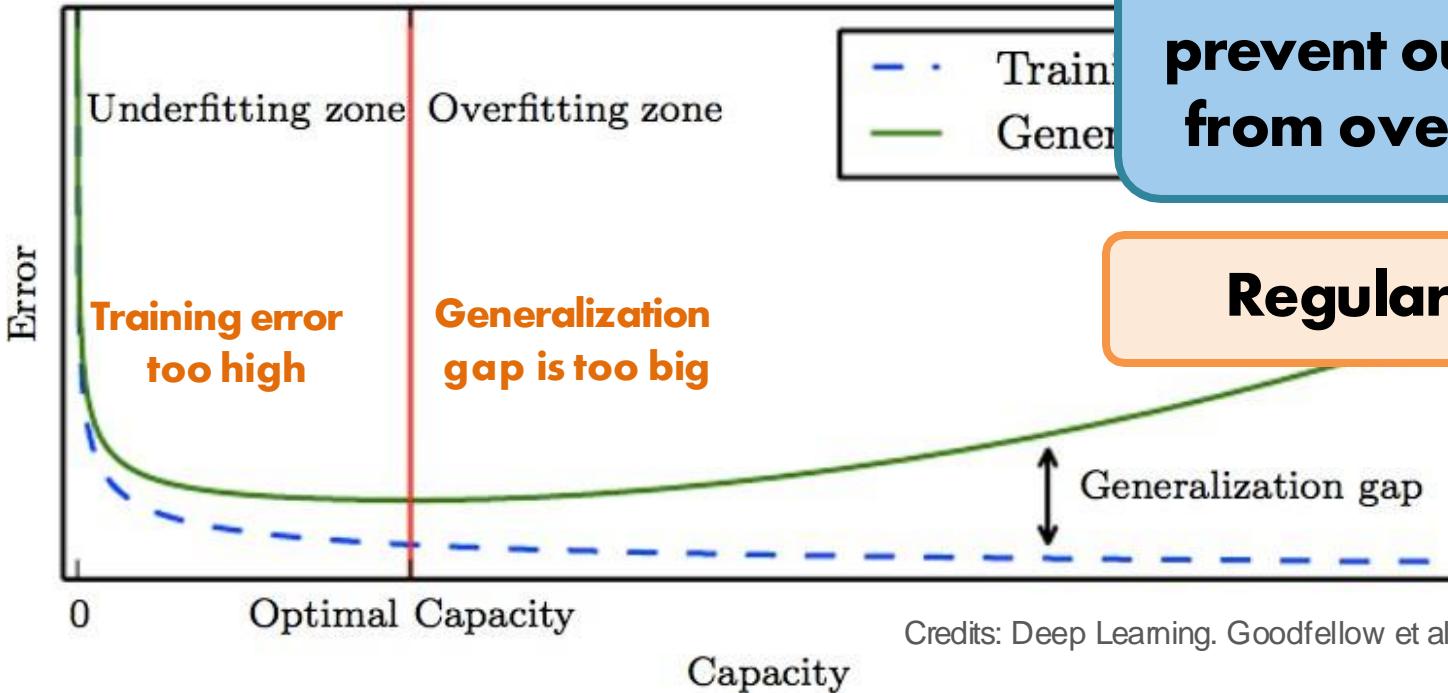
Over-and Underfitting

Training/ Validation curve



Over-and Underfitting

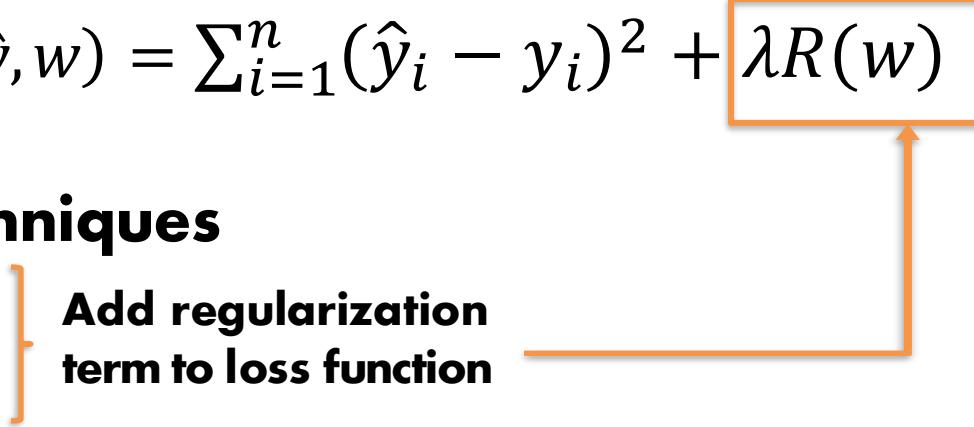
Training/ Validation curve



How can we prevent our model from overfitting?

Regularization

Regularization

- **Loss function** $\mathcal{L}(y, \hat{y}, w) = \sum_{i=1}^n (\hat{y}_i - y_i)^2 + \lambda R(w)$
 - **Regularization techniques**
 - L₂ regularization
 - L₁ regularization
 - Dropout
 - Early stopping
 - ...
- Add regularization term to loss function
- 

Regularization Example

- **Input**: 3 **features** $x = [1, 2, 1]$
- **Two linear classifiers that give the same result**:
- $w_1 = [0, 0.9, 0]$ **Ignores 2 features**
- $w_2 = [0.15, 0.75, 0.15]$ **Use all features**

Regularization Example (L₂)

- **Loss function** $\mathcal{L}(y, \hat{y}, w) = \sum_{i=1}^n (x_i w_{ji} - y_i)^2 + \lambda R(w)$
- **L₂ regularization** $R(w) = \|w\|_2^2 = \sum_{i=1}^n w_i^2$

$$R(w_1) = 0 + 0.9^2 + 0 = 0.81$$

$$R(w_2) = 0.15^2 + 0.75^2 + 0.15^2 = 0.6075$$

Minimization
Promotes weight
uniformity

$$x = [1, 2, 1], w_1 = [0, 0.9, 0], w_2 = [0.15, 0.75, 0.15]$$

Regularization Example (L_1)

- **Loss function** $\mathcal{L}(y, \hat{y}, w) = \sum_{i=1}^n (x_i w_{ji} - y_i)^2 + \lambda R(w)$
- **L_1 regularization** $R(w) = \|w\|_1 = \sum_{i=1}^n |w_i|$

$$R(w_1) = 0 + 0.9 + 0 = 0.9$$

Minimization
enforces sparsity

$$R(w_2) = 0.15 + 0.75 + 0.15 = 1.05$$

$$x = [1, 2, 1], w_1 = [0, 0.9, 0], w_2 = [0.15, 0.75, 0.15]$$

Regularization: Effect (L_1)

- Dog classifier takes different inputs

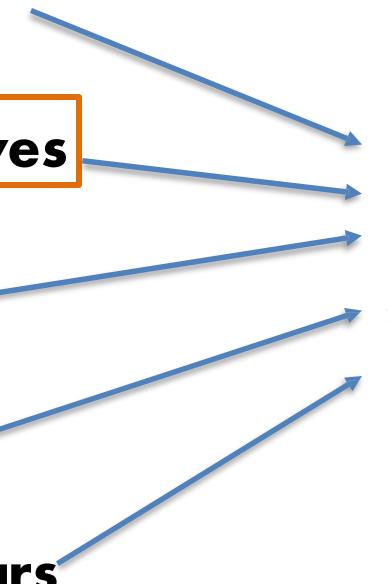
Furry

Has two eyes

Has a tail

Has paws

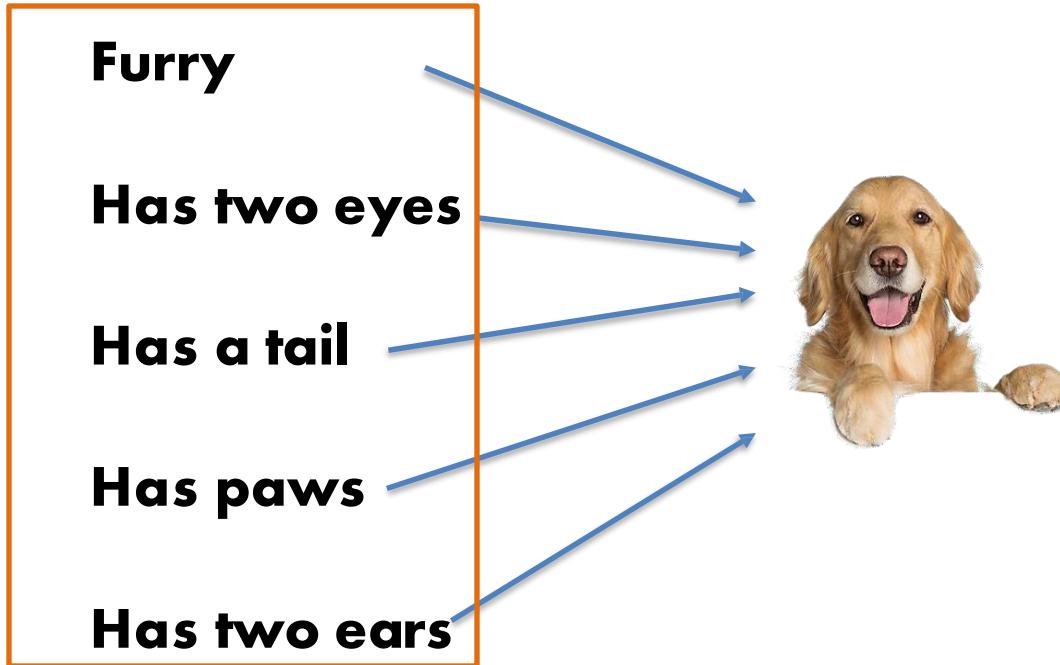
Has two ears



**L_1 regularization
encourages the model
to rely on only a few
key features**

Regularization: Effect (L₂)

- Dog classifier takes different inputs



L₂ regularization leverages all information to influence model learning

Data Augmentation: Motivation

Google Search Sign In

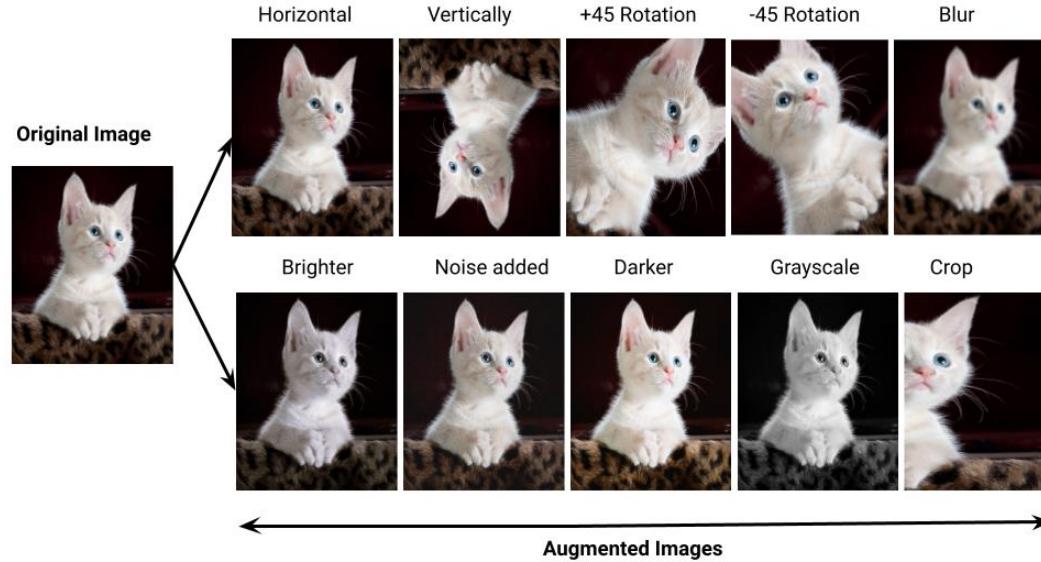
All **Images** Videos News Shopping More Settings Tools SafeSearch ▾

Cute **And Kittens** **Clipart** **Drawing** **Cute Baby** **White Cats And Kittens**

Pose **Appearance** **Illumination**

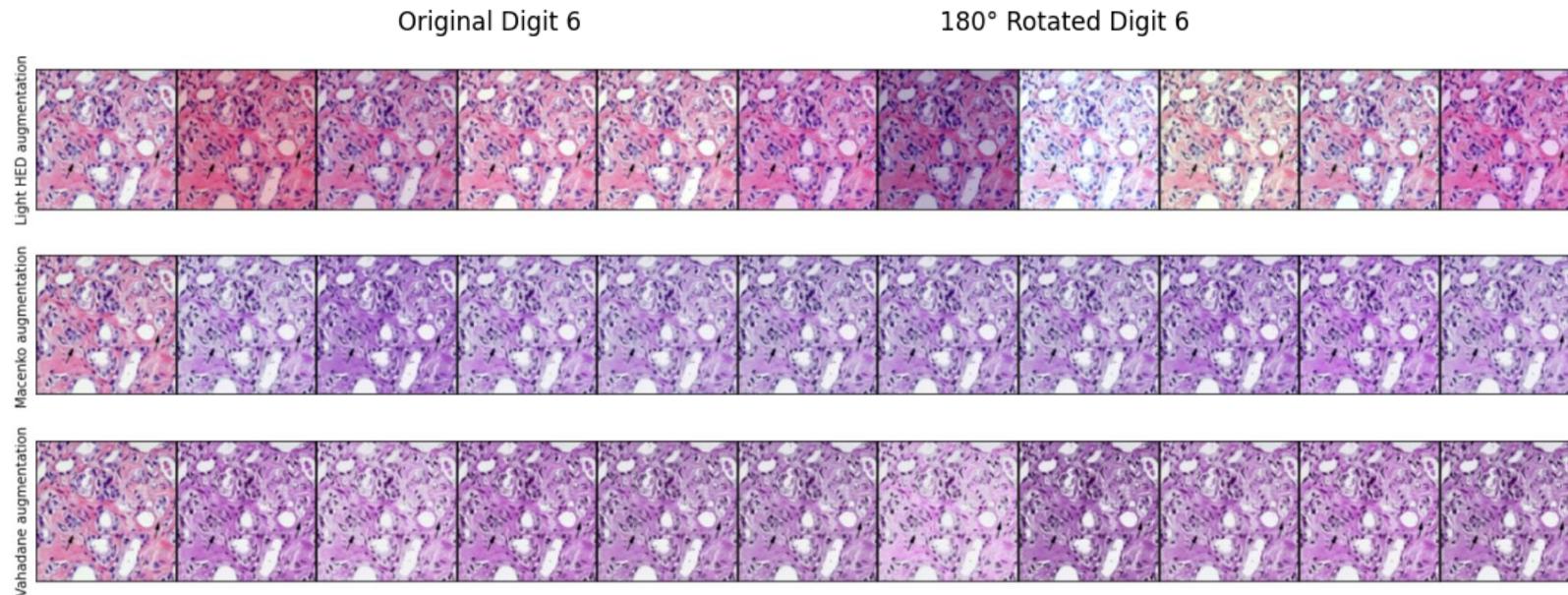
Data Augmentation

- **A classifier has to be invariant to a wide variety of transformations**
- **Augmentation: simulating plausible transformations**
- **Libraries: `torchvision.transforms`, Kornia, Albumentations**

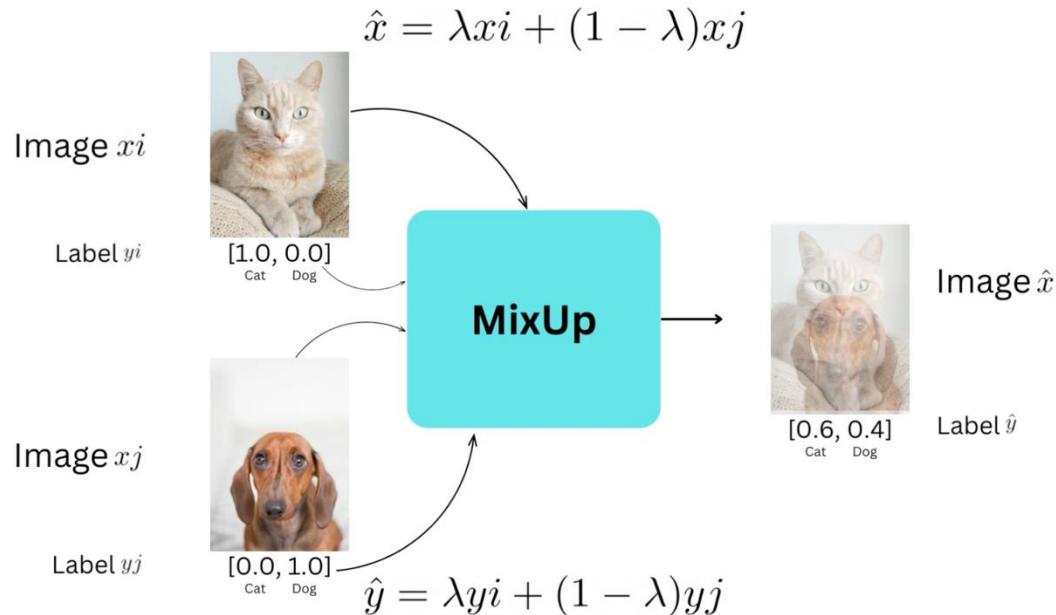
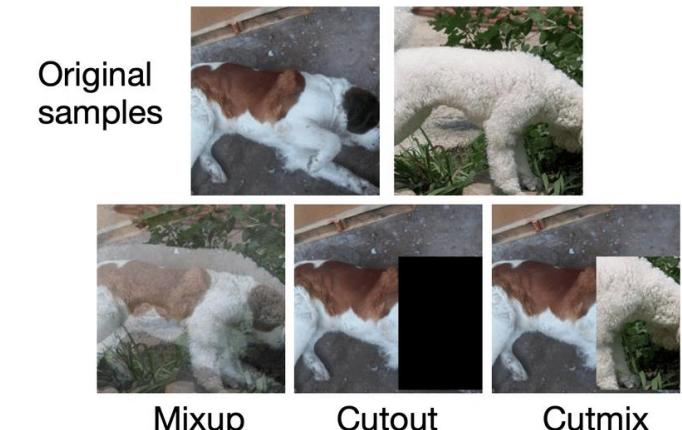


Valid & Plausible Transformations for Data Augmentation

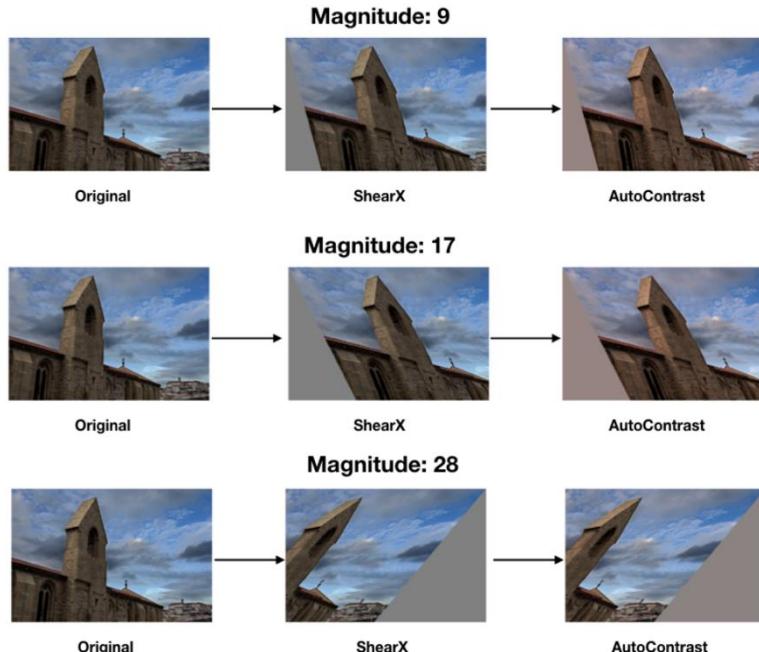
- **Any operation that does not alter the original label**



Data Augmentation: Advanced (Mixup & Variants)



Data Augmentation: Advanced (RandAugment)



```
transforms = [  
    'Identity', 'AutoContrast', 'Equalize',  
    'Rotate', 'Solarize', 'Color', 'Posterize',  
    'Contrast', 'Brightness', 'Sharpness',  
    'ShearX', 'ShearY', 'TranslateX', 'TranslateY']  
  
def randaugment(N, M):  
    """Generate a set of distortions.  
  
    Args:  
        N: Number of augmentation transformations to  
            apply sequentially.  
        M: Magnitude for all the transformations.  
    """  
  
    sampled_ops = np.random.choice(transforms, N)  
    return [(op, M) for op in sampled_ops]
```

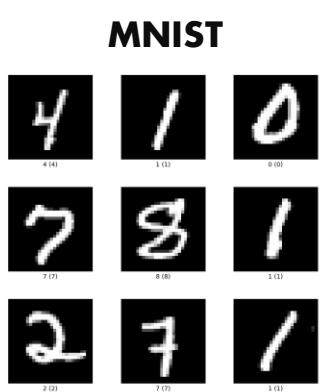
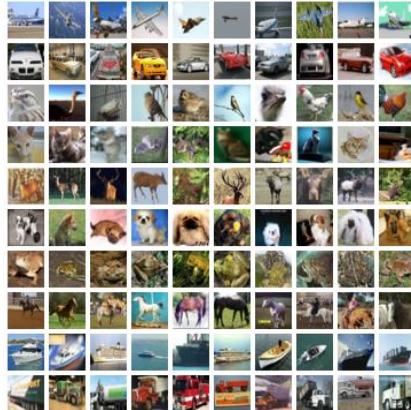
Figure 2. Python code for RandAugment based on numpy.

Vision Benchmarks, ResNet, BatchNorm & Transfer Learning

Key Datasets as Benchmarks for Image Classification

- Example datasets:
 - **MNIST (handwritten digits), 1990s-today: 60,000 images**
 - **CIFAR 10 & CIFAR 100, 2009: ~60,000 images**
 - **ILSVRC (ImageNet-1K), 2009: 1.2 million training images, 1000 categories**

CIFAR - 10



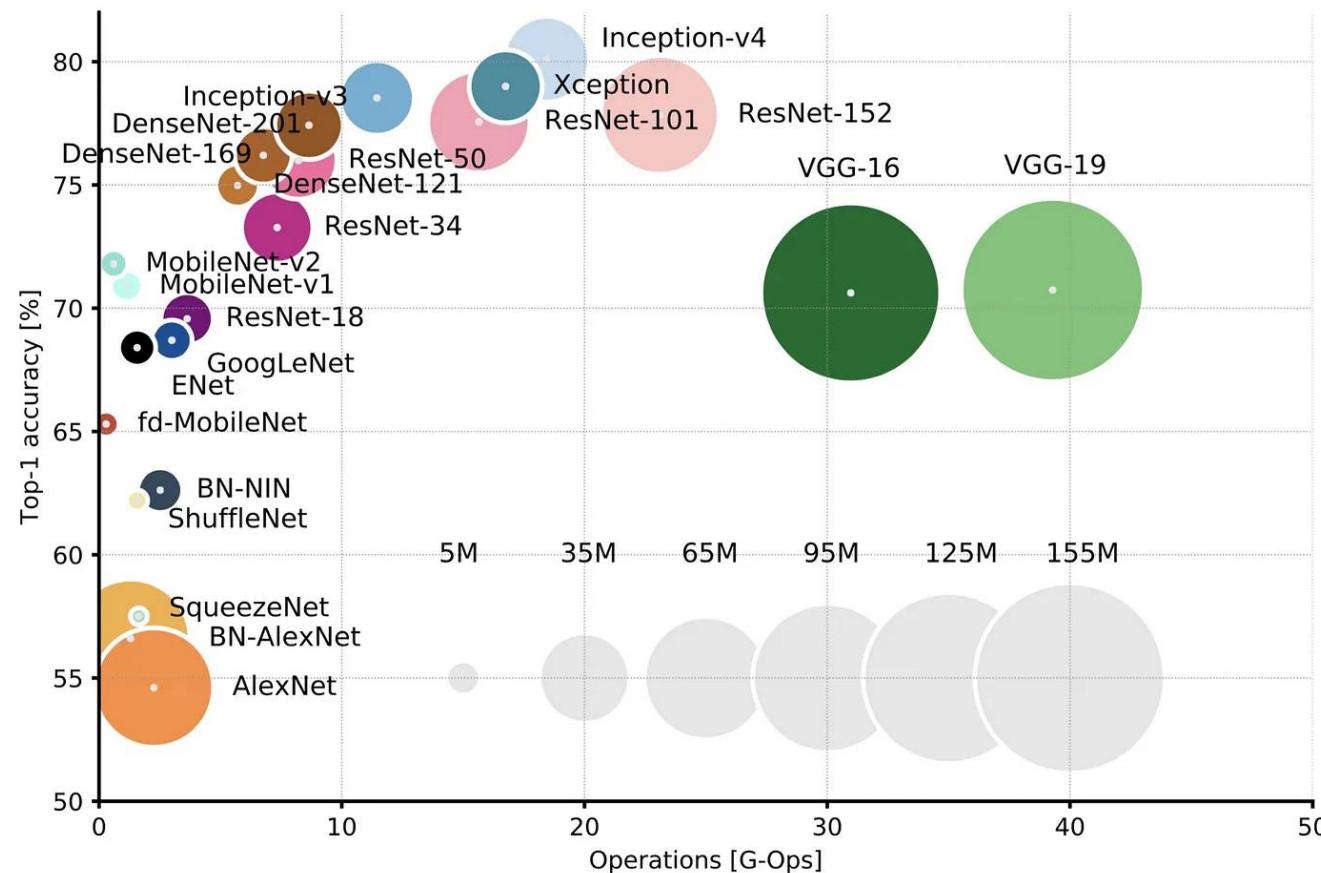
ImageNet- 1K

Google's JFT-300M

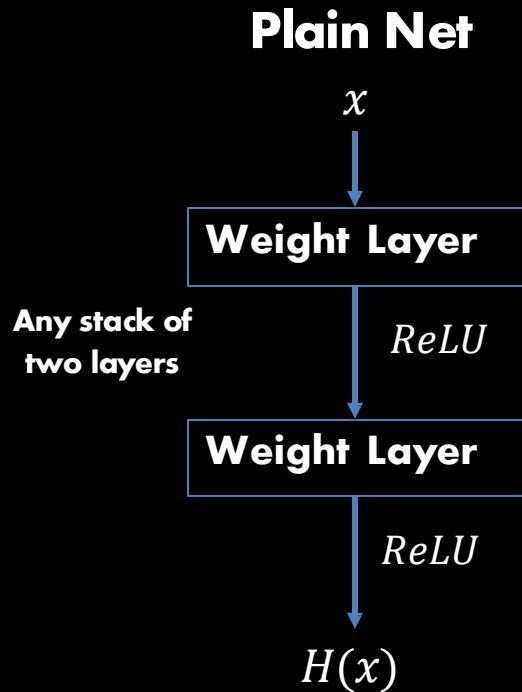
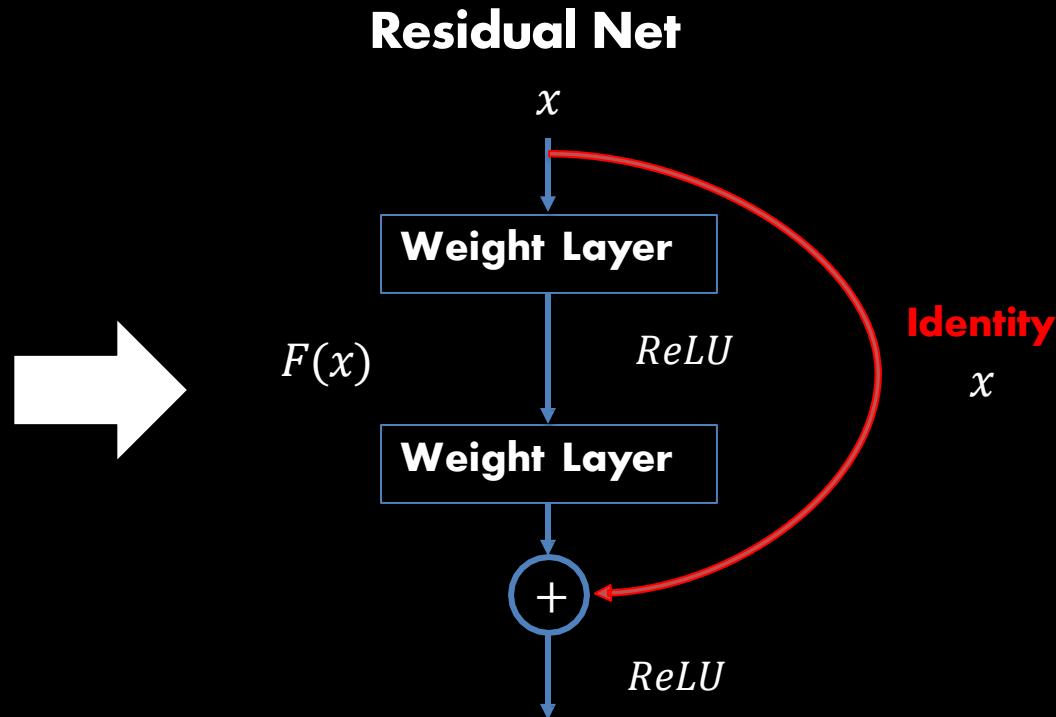
ImageNet- 21K

LAION- 400M

CNN Architectures: Accuracy vs. Complexity



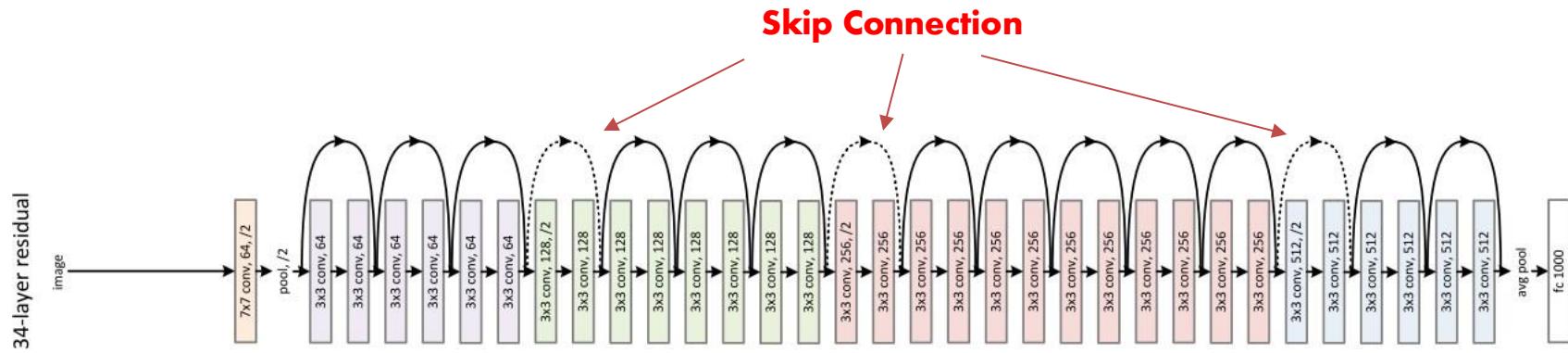
Residual Networks (ResNets)



2016

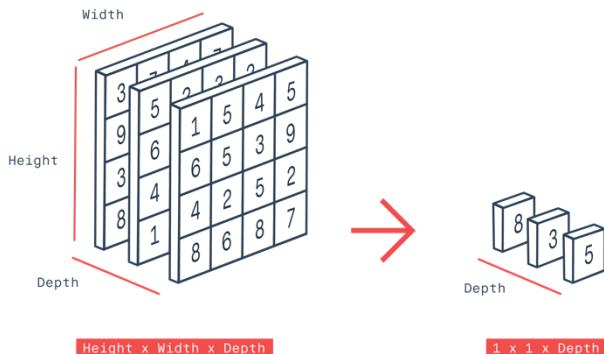
Deep Residual Learning for Image Recognition

ResNets

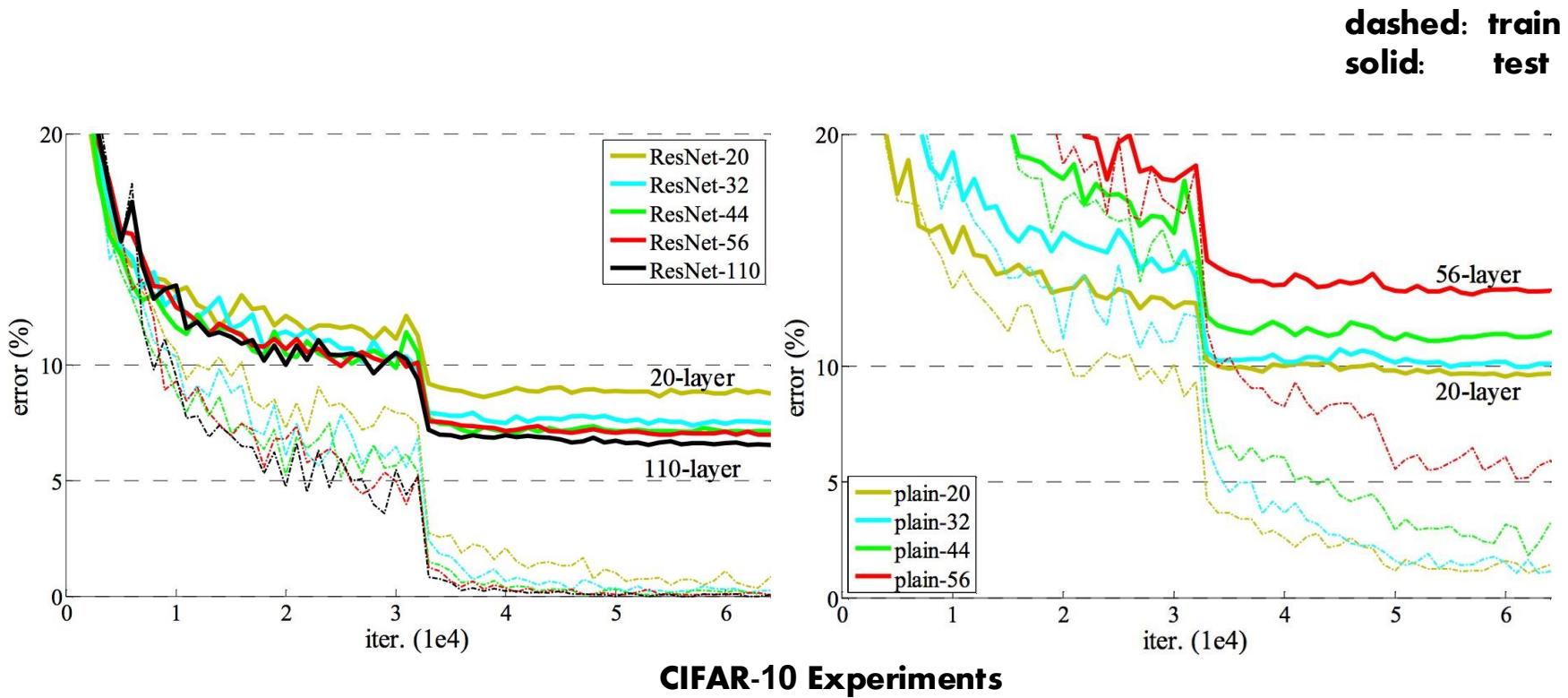


Why is this model important?

- **Frequently used today**
- **Skip connections and use of batch normalization**
- **Use of global average pooling instead of FC layers**

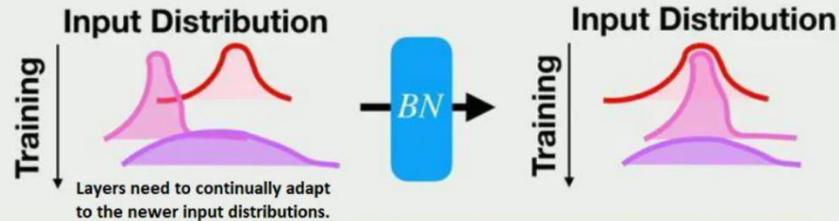


Depth vs. Performance



Batch Normalization

Reduces “internal covariate shift”



Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

Sergey Ioffe
Christian Szegedy

Google, 1600 Amphitheatre Pkwy, Mountain View, CA 94043

SIOFFE@GOOGLE.COM
SZEGEDY@GOOGLE.COM

Abstract

Training Deep Neural Networks is complicated by the fact that the distribution of each layer’s inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as *internal covariate shift*, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization *for each training mini-batch*. Batch Normalization allows us to use much higher learning rates and be less careful about initialization, and in some cases eliminates the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.82% top-5 test error, exceeding the accuracy of human raters.

minimize the loss

$$\Theta = \arg \min_{\Theta} \frac{1}{N} \sum_{i=1}^N \ell(x_i, \Theta)$$

where $x_{1\dots N}$ is the training data set. With SGD, the training proceeds in steps, at each step considering a *mini-batch* $x_{1\dots m}$ of size m . Using mini-batches of examples, as opposed to one example at a time, is helpful in several ways. First, the gradient of the loss over a mini-batch $\frac{1}{m} \sum_{i=1}^m \frac{\partial \ell(x_i, \Theta)}{\partial \Theta}$ is an estimate of the gradient over the training set, whose quality improves as the batch size increases. Second, computation over a mini-batch can be more efficient than m computations for individual examples on modern computing platforms.

While stochastic gradient is simple and effective, it requires careful tuning of the model hyper-parameters, specifically the learning rate and the initial parameter values. The training is complicated by the fact that the inputs to each layer are affected by the parameters of all preceding layers – so that small changes to the network parameters amplify as the network becomes deeper.

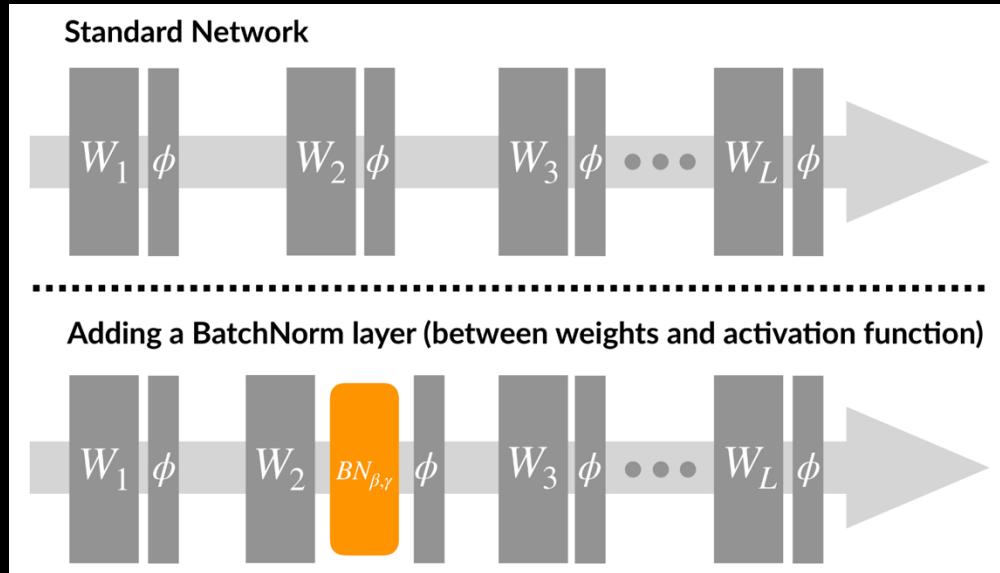
The change in the distributions of layers’ inputs presents a problem because the layers need to continuously adapt to the new distribution. When the input distribution to a learning system changes, it is said to experience *covariate shift* (Shimodaira, 2000). This is typically handled

Batch Normalization

Reduces “internal covariate shift”

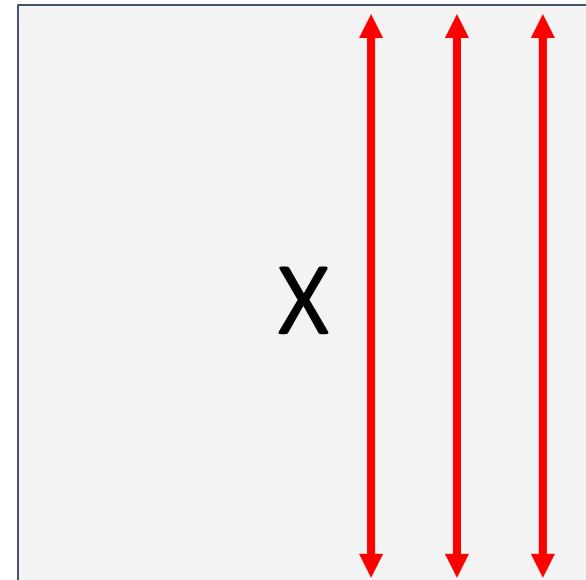
**Normalizes activations batch-wise;
fully differentiable for backprop**

$$\hat{x}^{(k)} = \frac{x^{(k)} - \text{E}[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$



Batch Normalization (Fully Connected Version)

Input: $x : N \times D$



$$\mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j}$$

Per-feature mean, shape is D

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^N (x_{i,j} - \mu_j)^2$$

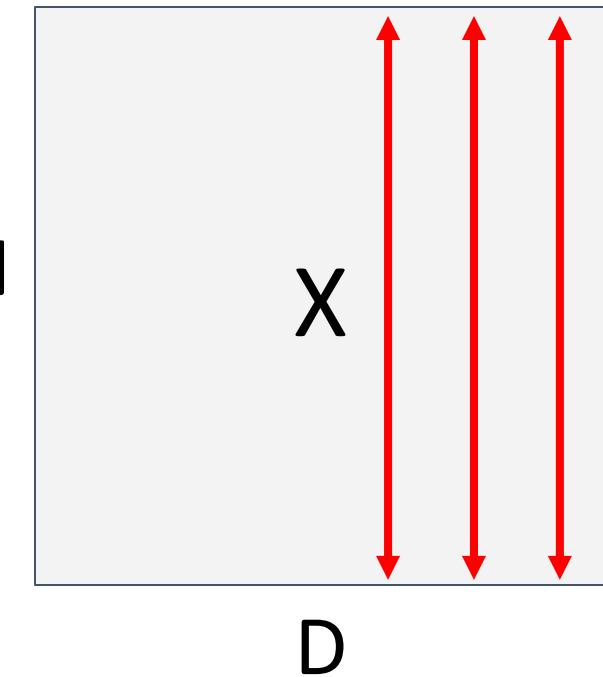
Per-feature std, shape is D

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Normalized x, Shape is N x D

Batch Normalization (Fully Connected Version)

Input: $x : N \times D$



$$\mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j}$$

Per-feature mean, shape is D

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^N (x_{i,j} - \mu_j)^2$$

Per-feature std, shape is D

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Normalized x, Shape is N x D

Problem: What if zero-mean, unit variance is too hard of a constraint?

Batch Normalization (Fully Connected Version)

Input: $x : N \times D$

$$\mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j}$$

Per-feature mean, shape is D

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^N (x_{i,j} - \mu_j)^2$$

Per-feature std, shape is D

Learnable scale and shift parameters:

$$\gamma, \beta : D$$

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Normalized x, Shape is N x D

Learning $\gamma = \sigma$, $\beta = \mu$ will recover the identity function!

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$

Output, Shape is N x D

Batchnorm eliminates the need for bias terms

Batch Normalization : Test-Time

Minibatch-dependent estimates

Input: $x : N \times D$

$$\mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j}$$

Per-feature mean, shape is D

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^N (x_{i,j} - \mu_j)^2$$

Per-feature std, shape is D

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Normalized x, Shape is N x D

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$

Output, Shape is N x D

Learnable scale and shift parameters:

$$\gamma, \beta : D$$

Learning $\gamma = \sigma$,
 $\beta = \mu$ **will recover the identity function!**

Batch Normalization : Test-Time

Input: $x : N \times D$

μ_j = (Running) average of values seen during training

Per-feature mean, shape is D

σ_j^2 = (Running) average of values seen during training

Per-feature std, shape is D

Learnable scale and shift parameters:

$\gamma, \beta : D$

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Normalized x, Shape is N x D

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$

Output, Shape is N x D

- During testing, batchnorm becomes a fixed linear (affine) transformation.
- Can be fused with previous weight layer with no extra overhead

Batch Normalization for ConvNets

**Batch Normalization for
fully-connected networks**

\mathbf{x} : $N \times D$

Normalize

μ, σ : $1 \times D$

γ, β : $1 \times D$

$\mathbf{y} = \gamma(\mathbf{x} - \mu) / \sigma + \beta$

**Batch Normalization for
convolutional networks
(Spatial Batchnorm, BatchNorm2D)**

\mathbf{x} : $N \times C \times H \times W$

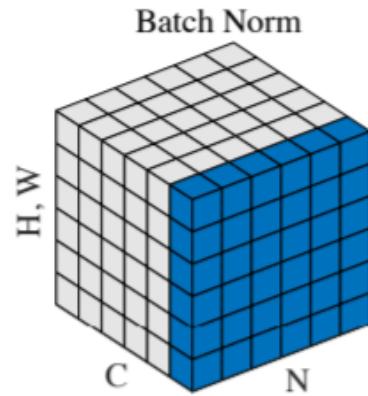
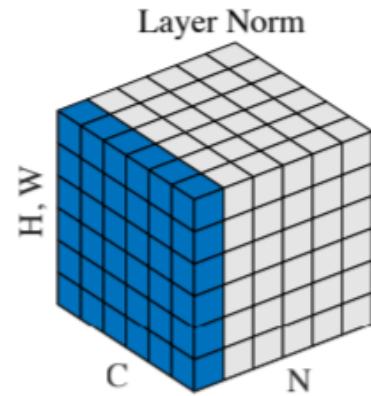
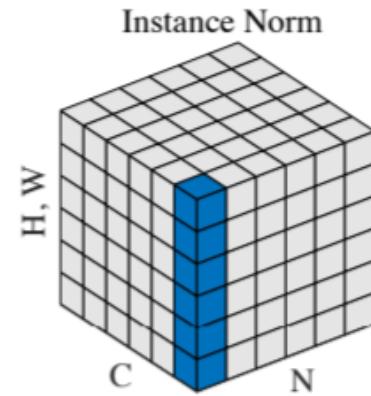
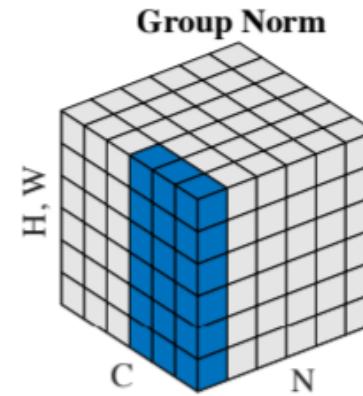
Normalize

μ, σ : $1 \times C \times 1 \times 1$

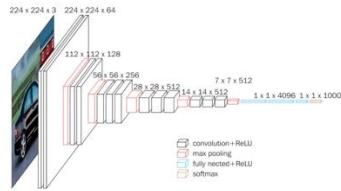
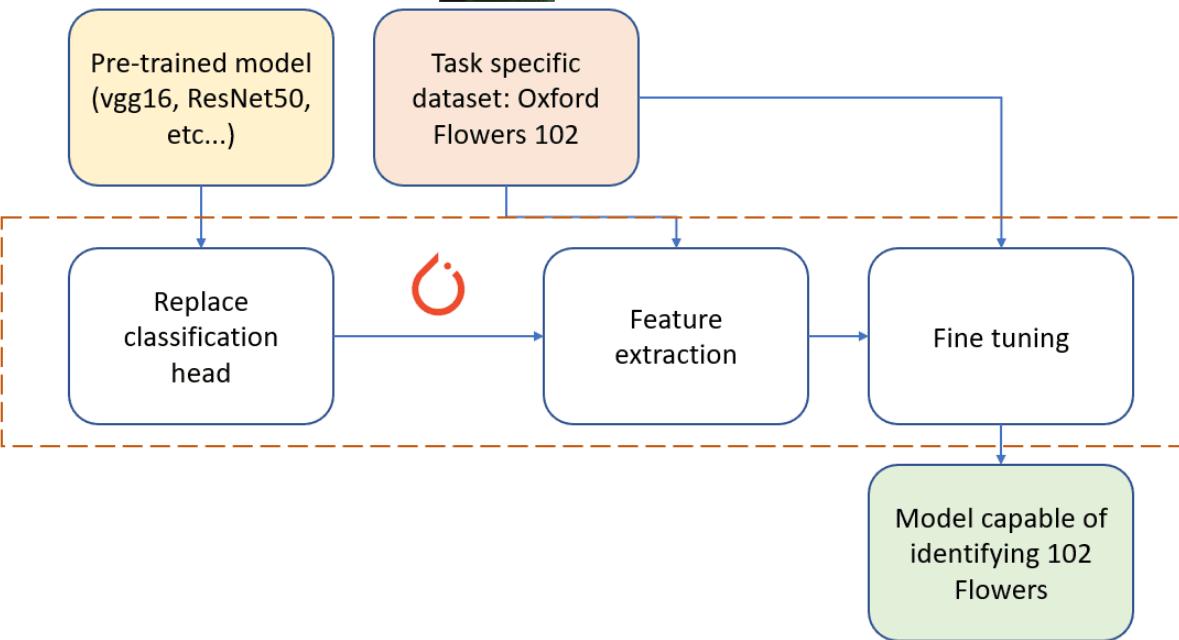
γ, β : $1 \times C \times 1 \times 1$

$\mathbf{y} = \gamma(\mathbf{x} - \mu) / \sigma + \beta$

Other Normalizations

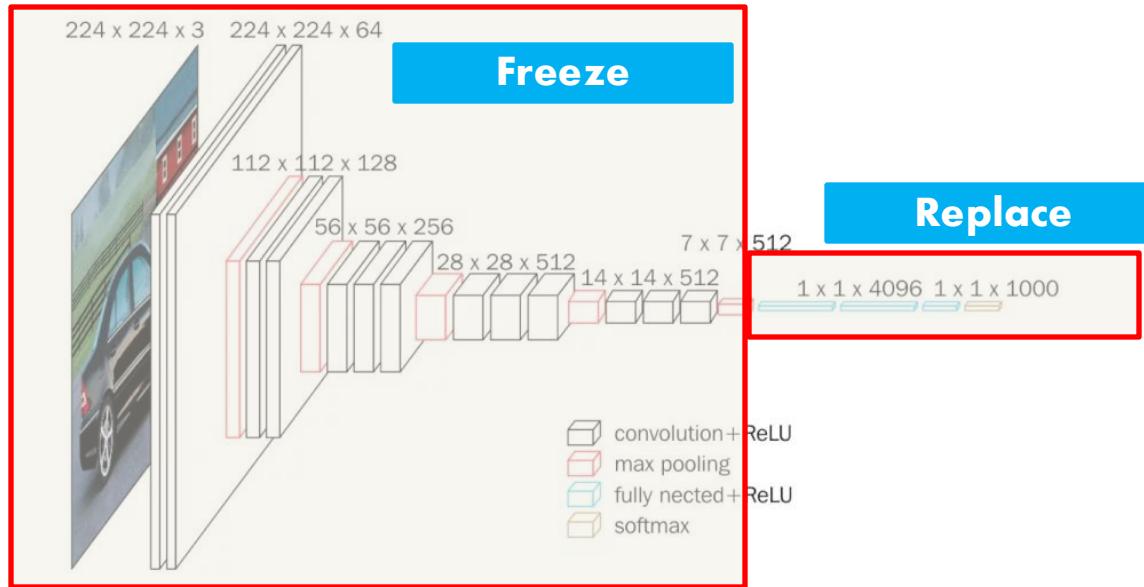


Transfer Learning: Fine-Tuning for a New Task

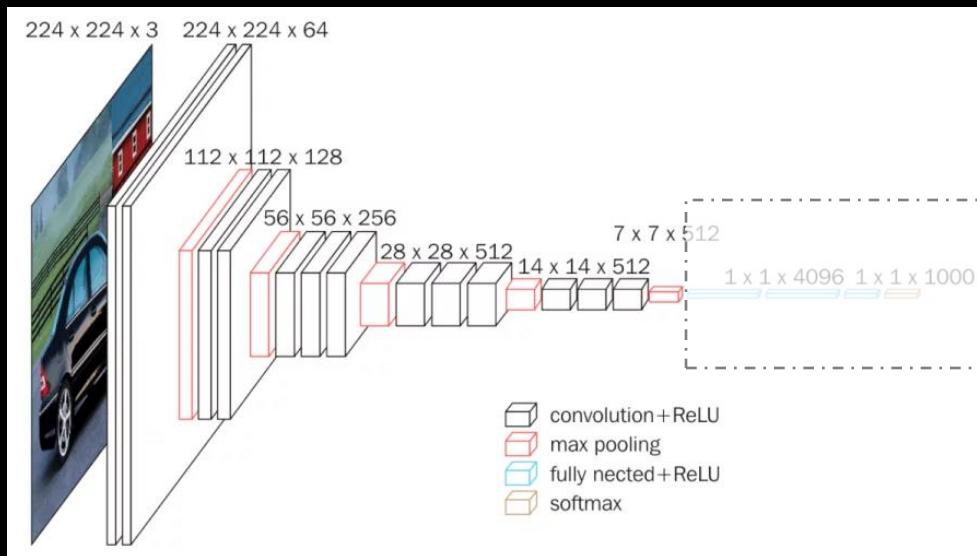


Transfer Learning

- **Optimized learning with scarce data, freeze early layers, replace final classification layers**
- **Optionally fine-tune deeper layers if the new domain differs significantly**



Versatile Applications of CNNs

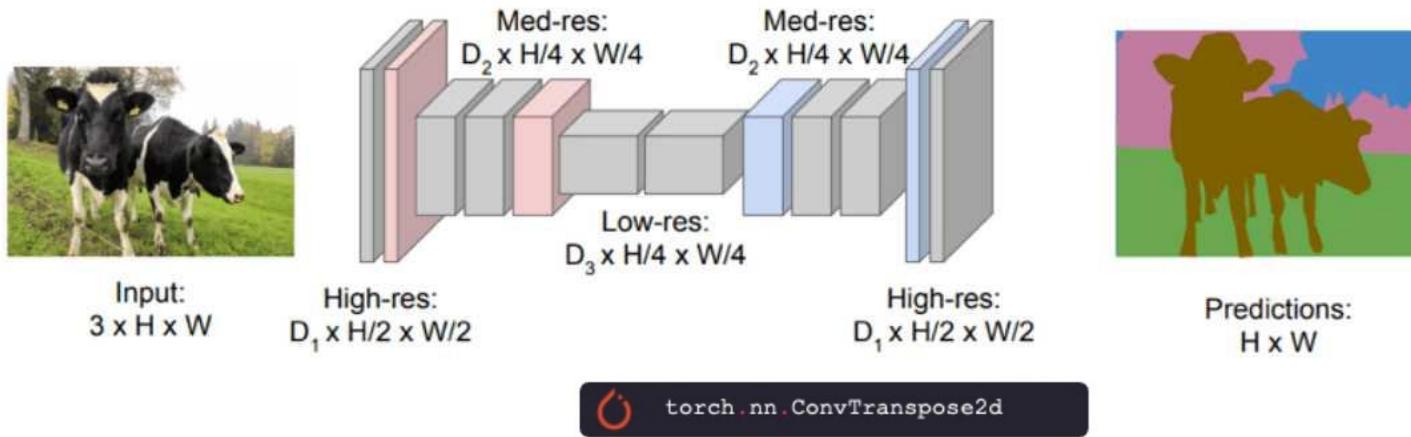


Segmentation

Object Detection

Semantic Segmentation: Fully Convolutional Networks

- Network designed with only convolutional layers, handling arbitrary input sizes
 - Uses downsampling and upsampling operations (transpose convolutions)
- 📌 Recent approaches like U-Net and other encoder-decoder designs follow a similar paradigm



You Only Look Once (YOLO)

You Only Look Once: Unified, Real-Time Object Detection

Joseph Redmon*, Santosh Divvala*[†], Ross Girshick[¶], Ali Farhadi*[†]

University of Washington*, Allen Institute for AI[†], Facebook AI Research[¶]

<http://pjreddie.com/yolo/>

Abstract

We present YOLO, a new approach to object detection. Prior work on object detection repurposes classifiers to perform detection. Instead, we frame object detection as a regression problem to spatially separated bounding boxes and associated class probabilities. A single neural network predicts bounding boxes and class probabilities directly from full images in one evaluation. Since the whole detection pipeline is a single network, it can be optimized end-to-end directly on detection performance.

Our unified architecture is extremely fast. Our base YOLO model processes images in real-time at 45 frames per second. A smaller version of the network, Fast YOLO, processes an astounding 155 frames per second while still achieving double the mAP of other real-time detectors. Compared to state-of-the-art detection systems, YOLO makes more localization errors but is less likely to predict positives on background. Finally, YOLO learns very

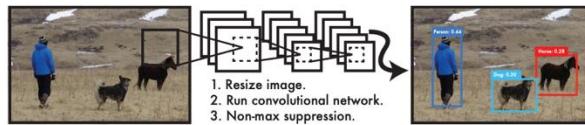
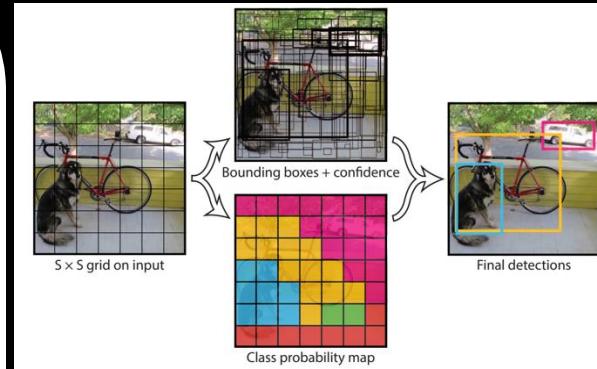
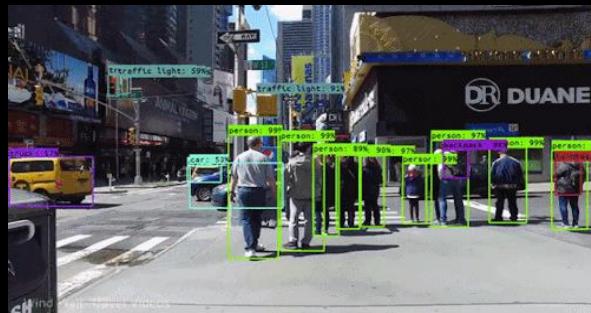
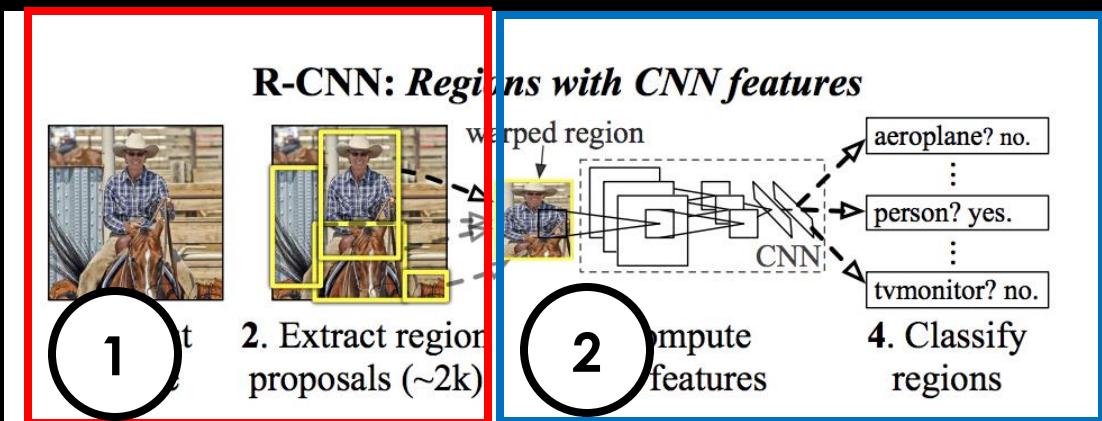
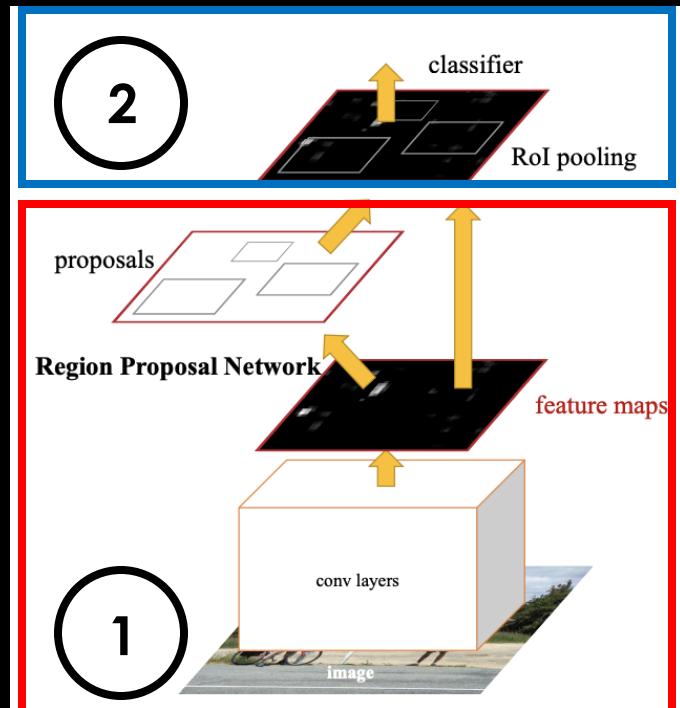


Figure 1: The YOLO Detection System. Processing images with YOLO is simple and straightforward. Our system (1) resizes the input image to 448×448 , (2) runs a single convolutional network on the image, and (3) thresholds the resulting detections by the model’s confidence.



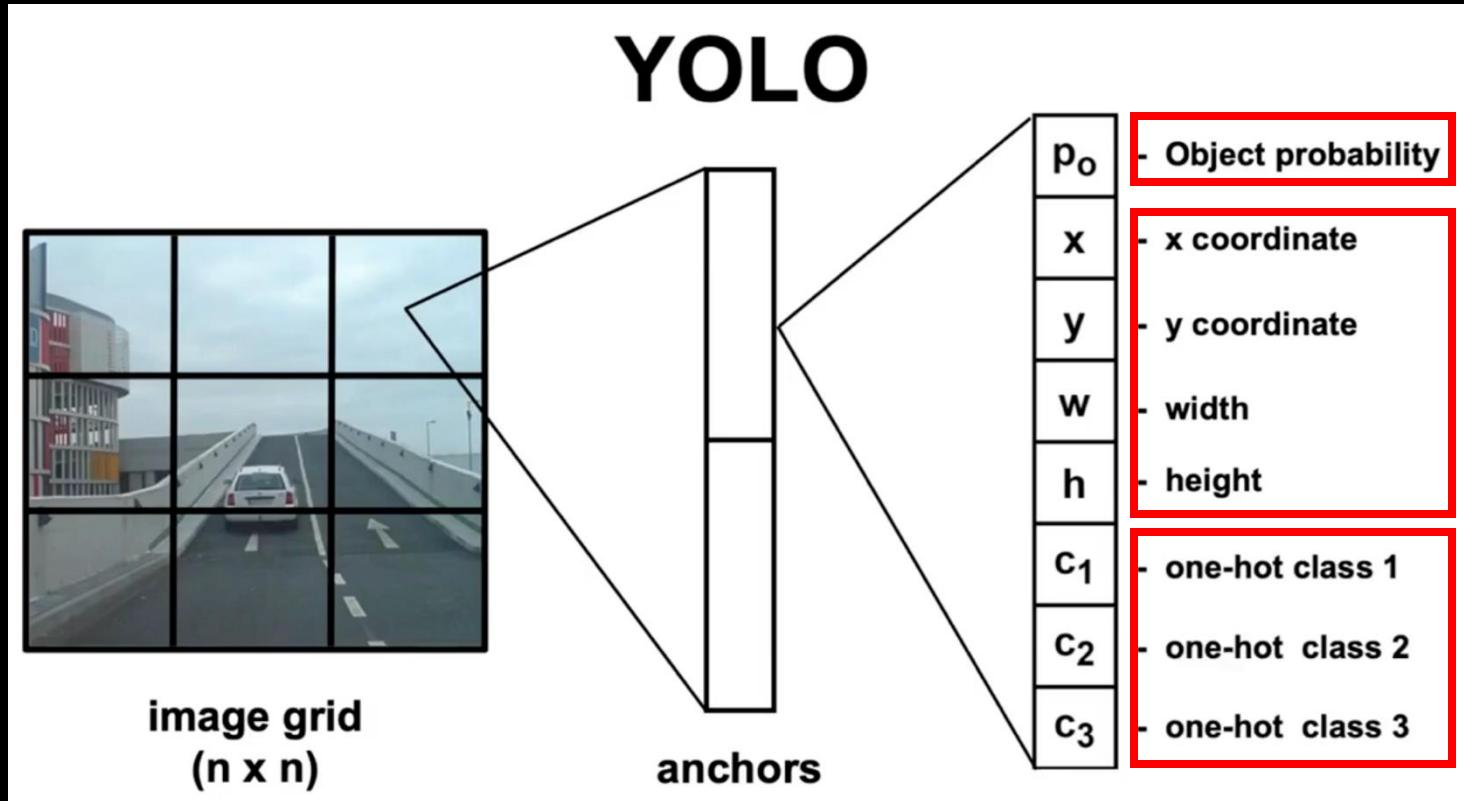
methods to first generate potential bounding boxes in an image and then run a classifier on these proposed boxes. After classification, post-processing is used to refine the bounding boxes, eliminate duplicate detections, and rescore the boxes based on other objects in the scene [13]. These complex pipelines are slow and hard to optimize because a

Prior Two-Step Object Detection Approaches



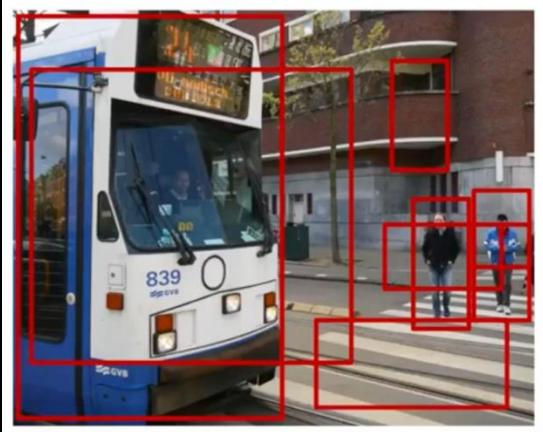
[Girshick et al., CVPR'14] Rich feature hierarchies for accurate object detection and semantic segmentation
[Ren et al., NIPS'15] Faster R-CNN: Towards real-time object detection with region proposal networks

YOLO Grid-Based Prediction



Prediction Post-Processing in YOLO

- 1- Remove the low probability bounding boxes
- 2- Apply non-max suppression (NMS)



Prediction Post-Processing in YOLO

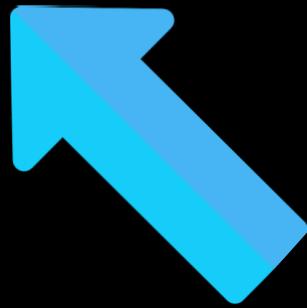
1- Remove the low probability bounding boxes

2- Apply non-max suppression (NMS)

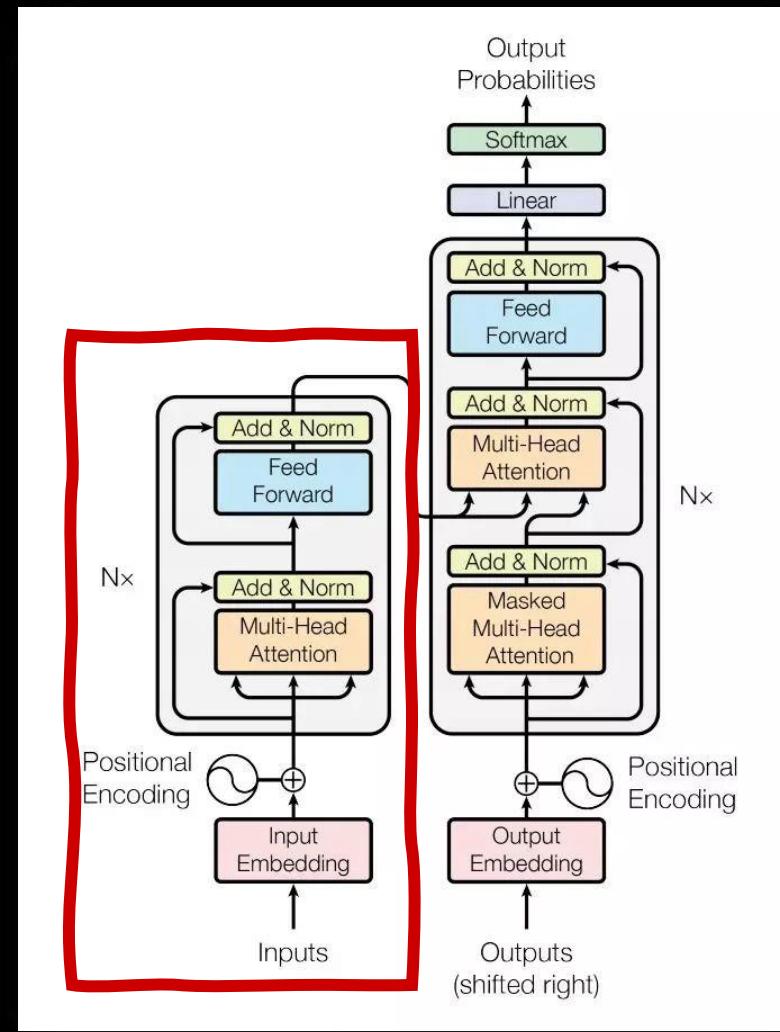
Limitations: struggles with small objects/crowded scene

🚀 YOLOv3, v4, v5, v7, and YOLOv8 add multi-scale predictions & stronger backbones.

Vision Transformer



Intuition and
Overview



2017

Attention Is All You Need

AN IMAGE IS WORTH 16x16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Alexey Dosovitskiy^{*,†}, Lucas Beyer^{*}, Alexander Kolesnikov^{*}, Dirk Weissenborn^{*},
Xiaohua Zhai^{*}, Thomas Unterthiner^{*}, Mostafa Dehghani^{*}, Matthias Minderer,
Georg Heigold^{*}, Sylvain Gelly^{*}, Jakob Uszkoreit^{*}, Neil Houlsby^{*,†}

^{*}equal technical contribution, [†]equal advising

Google Research, Brain Team

{adosovitskiy, neilhoulsby}@google.com

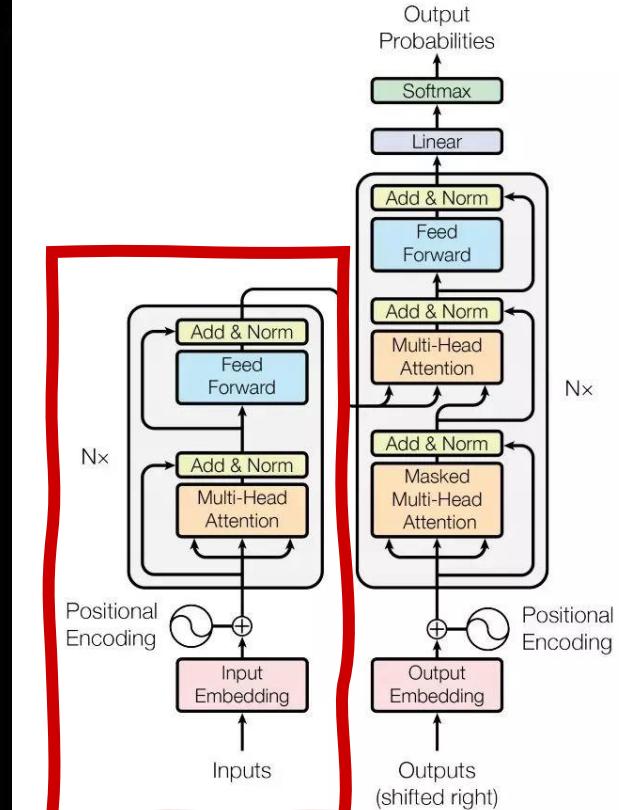
ABSTRACT

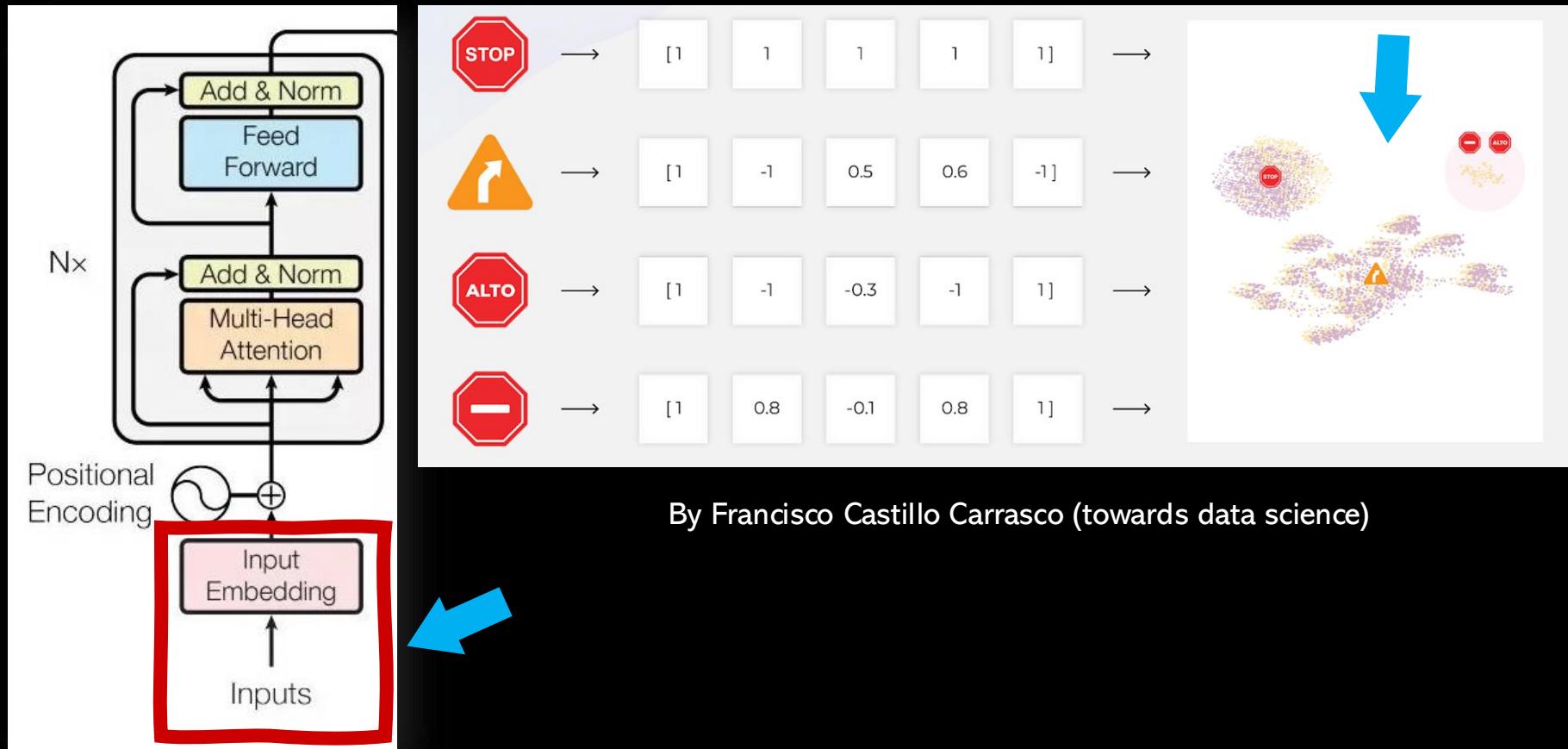
While the Transformer architecture has become the de-facto standard for natural language processing tasks, its applications to computer vision remain limited. In vision, attention is either applied in conjunction with convolutional networks, or used to replace certain components of convolutional networks while keeping their overall structure in place. We show that this reliance on CNNs is not necessary and a pure transformer applied directly to sequences of image patches can perform very well on image classification tasks. When pre-trained on large amounts of data and transferred to multiple mid-sized or small image recognition benchmarks (ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks while requiring substantially fewer computational resources to train.¹

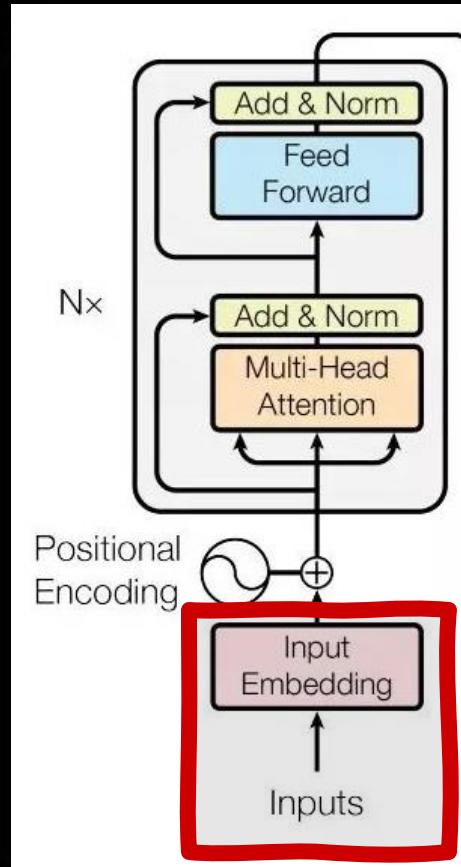
1 INTRODUCTION

Self-attention-based architectures, in particular Transformers (Vaswani et al., 2017), have become the model of choice in natural language processing (NLP). The dominant approach is to pre-train on a large text corpus and then fine-tune on a smaller task-specific dataset (Devlin et al., 2019). Thanks to Transformers’ computational efficiency and scalability, it has become possible to train models of unprecedented size, with over 100B parameters (Brown et al., 2020; Lepikhin et al., 2020). With the models and datasets growing, there is still no sign of saturating performance.

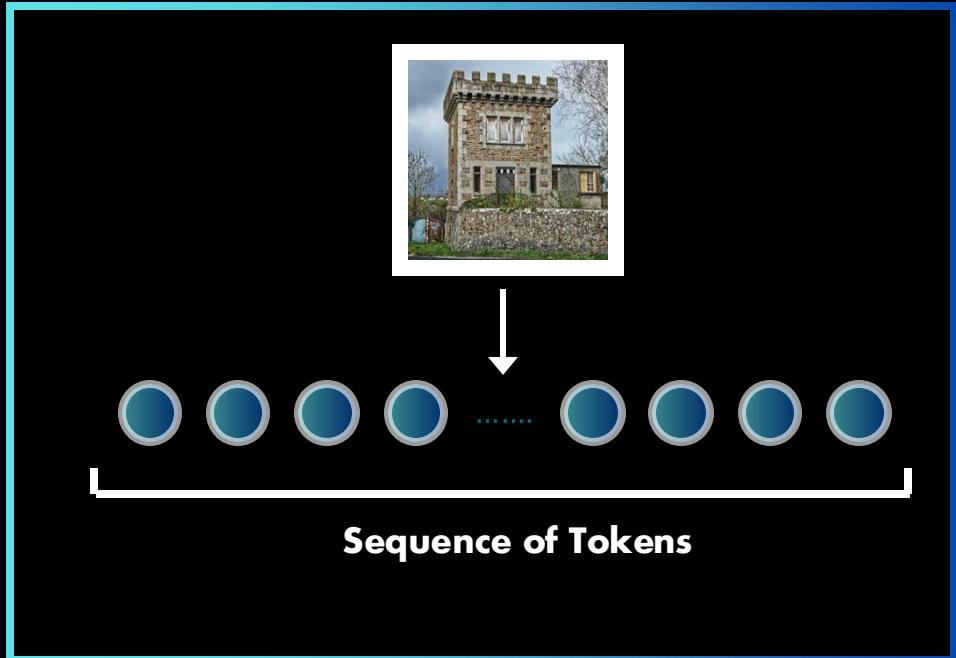
In computer vision, however, convolutional architectures remain dominant (LeCun et al., 1989; Krizhevsky et al., 2012; He et al., 2016). Inspired by NLP successes, multiple works try combining CNN-like architectures with self-attention (Wang et al., 2018; Carion et al., 2020), some replacing the convolutions entirely (Ramachandran et al., 2019; Wang et al., 2020a). The latter models, while theoretically efficient, have not yet been scaled effectively on modern hardware accelerators due to the use of specialized attention patterns. Therefore, in large-scale image recognition, classic ResNet-like architectures are still state of the art (Mahajan et al., 2018; Xie et al., 2020; Kolesnikov et al., 2020).





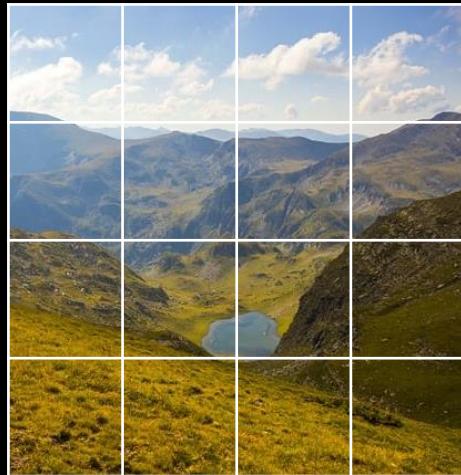


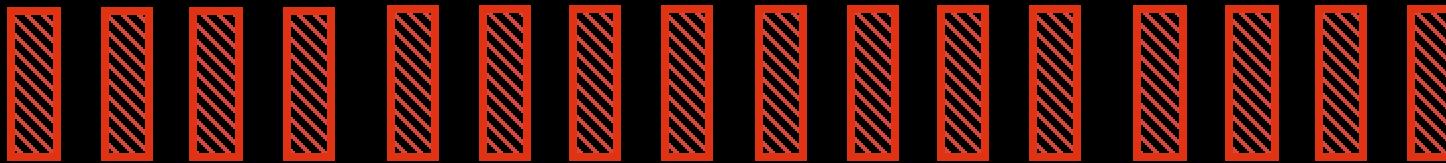
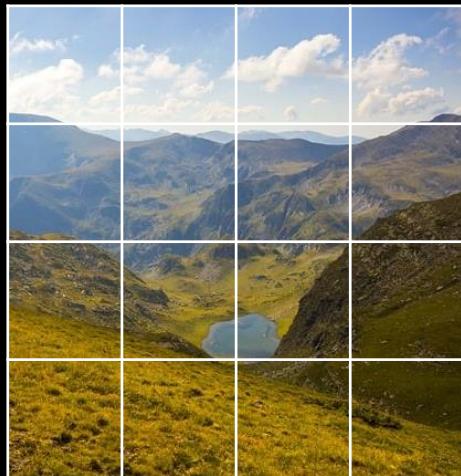
Input Embedding



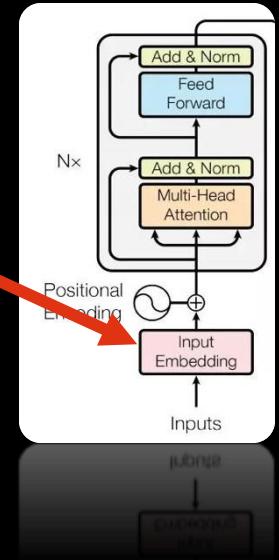
Sequence of Tokens

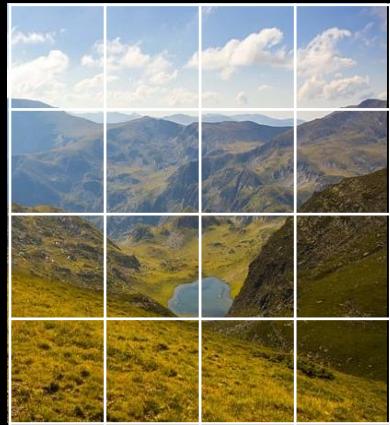
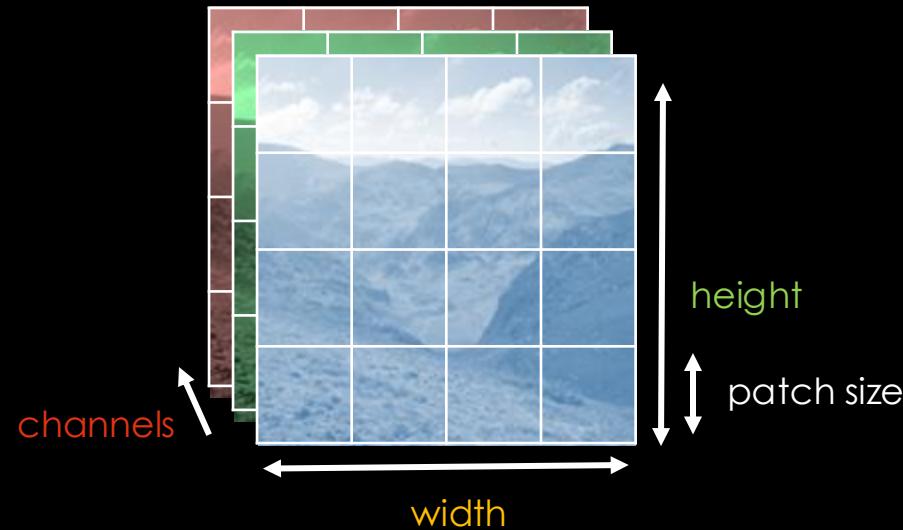
Image Patching



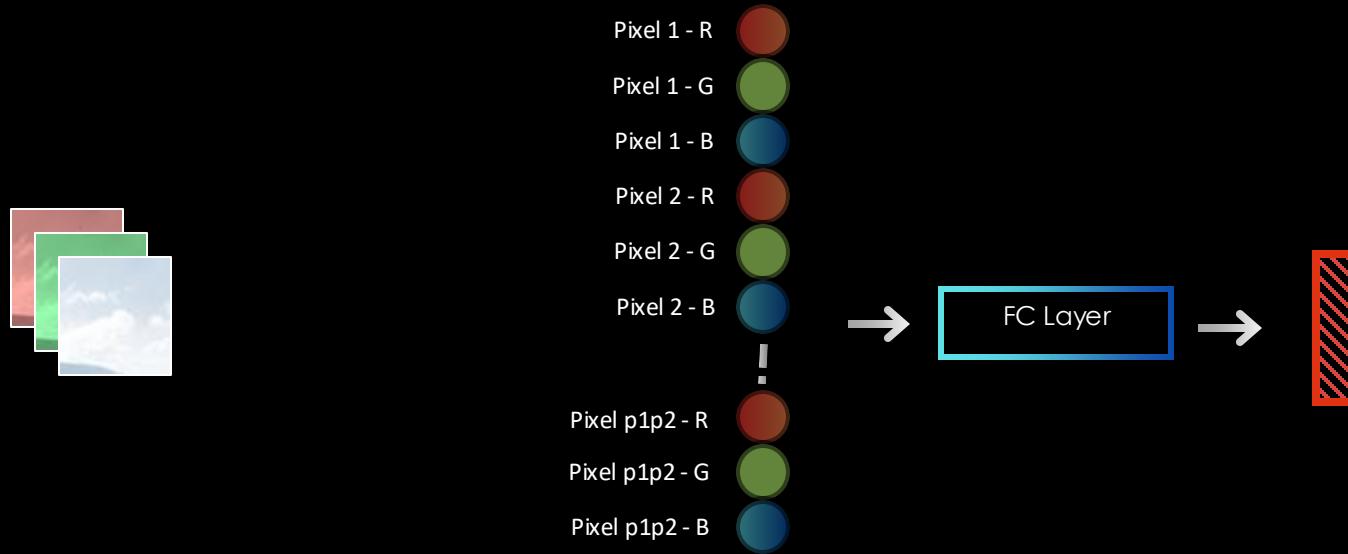


16 px
16 px

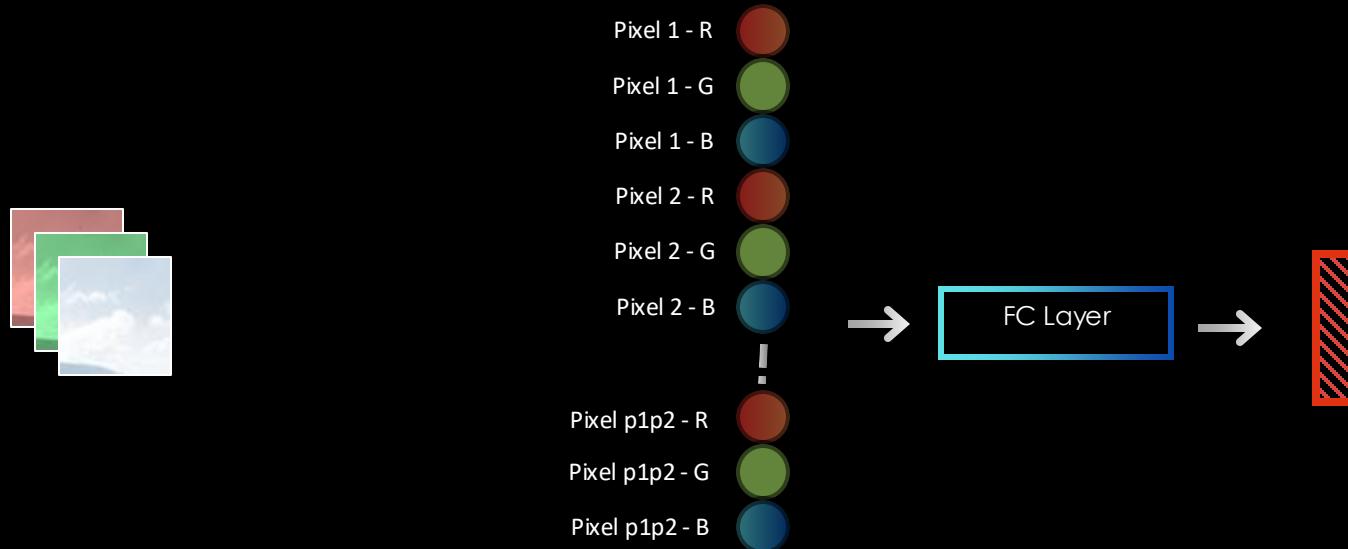




Number of Patches \times c \times p₁ \times p₂



D = Dimension at which transformer layers will operate



Number of Patches $\times c \times p_1 \times p_2$

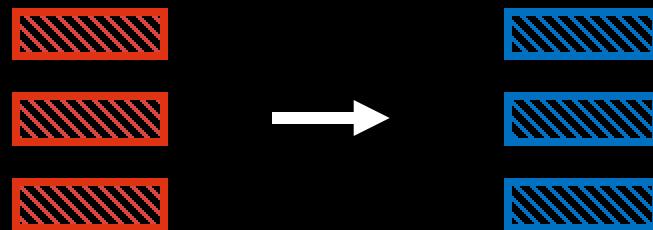
Number of Patches $\times (c \times p_1 \times p_2)$

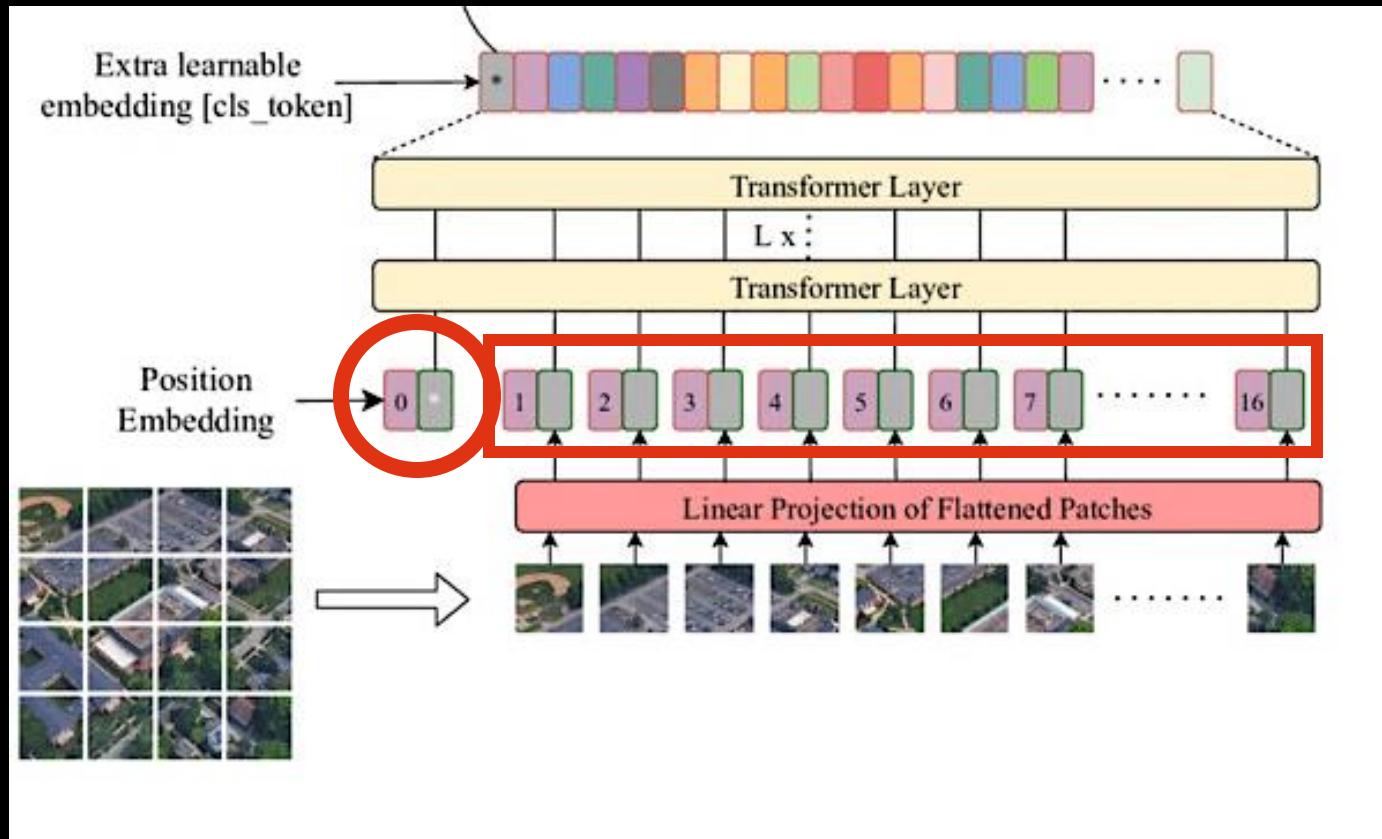
$N \times D$

D = Dimension at which transformer layers will operate

N = Number of patches (size of the sequence of tokens)

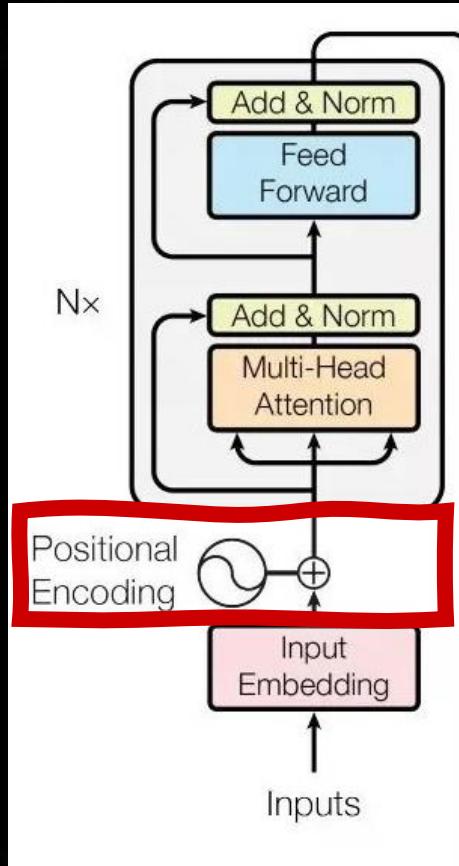
The CLS Token





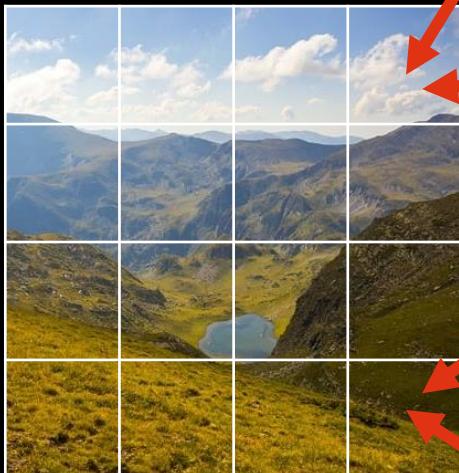
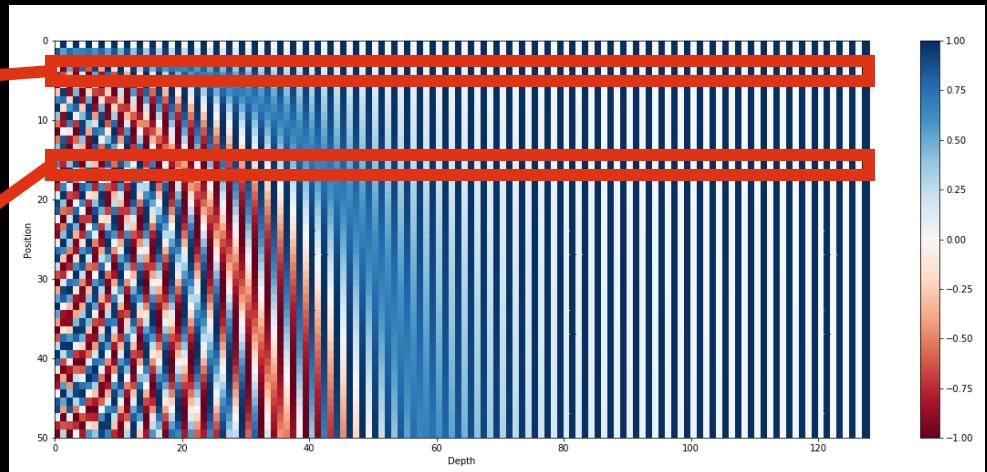
Source: A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization

The Positional Embedding



Fixed vs. Learned Positional Embeddings

That's patch #4



Source: Amirhossein Kazemnejad's Blog

That's patch #16

Fixed vs. Learned Positional Embeddings

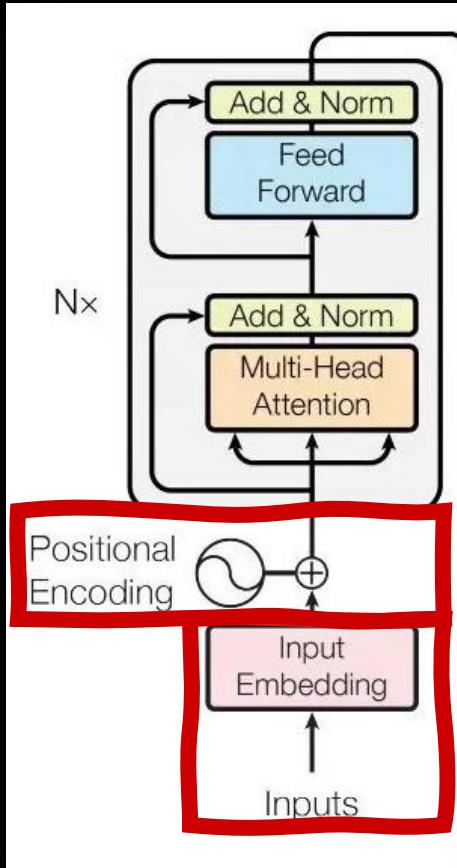
Pos. Emb.	Default/Stem	Every Layer	Every Layer-Shared
No Pos. Emb.	0.61382	N/A	N/A
1-D Pos. Emb.	0.64206	0.63964	0.64292
2-D Pos. Emb.	0.64001	0.64046	0.64022
Rel. Pos. Emb.	0.64032	N/A	N/A

Table 8: Results of the ablation study on positional embeddings with ViT-B/16 model evaluated on ImageNet 5-shot linear.

2020

An Image is Worth 16×16 Words

Patch Embedding

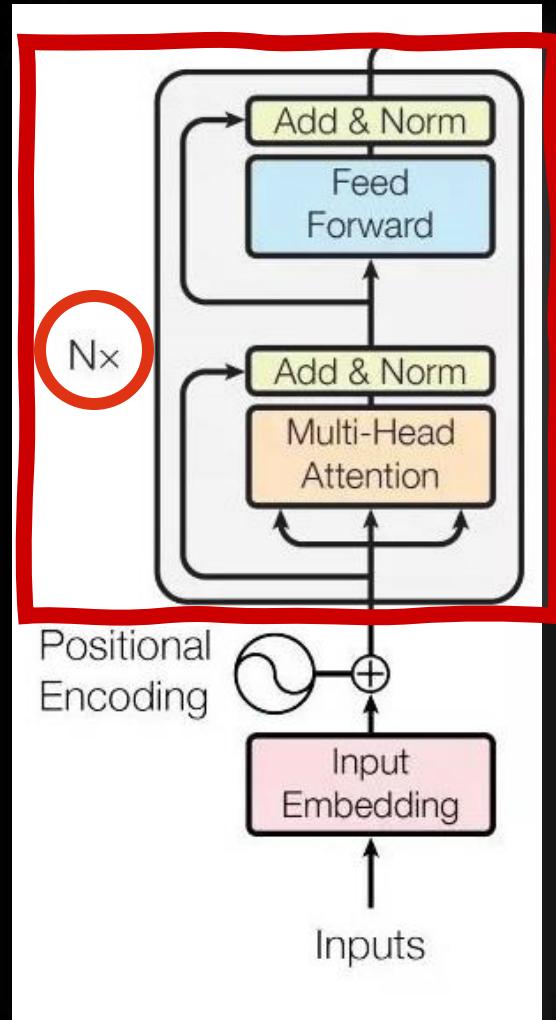


Convert Image into Sequence of Patches

Add CLS token to sequence of Patches

Add Positional Information to Patches

Attention Mechanism and Transformer Encoder



Attention

Block used in transformers that fulfils two responsibilities:

- **Identifying what is relevant to an input out of everything in its context**
- **Add more meaning to the representation of an entity by using the representation of its context**

But why ?

Attention

Block used in transformers that fulfils two responsibilities:

- **Identifying what is relevant to an input out of everything in its context**
- **Add more meaning to the representation of an entity by using the representation of its context**

But why ?

Show's last season

I hate rainy season

Attention

Block used in transformers that fulfils two responsibilities:

- **Identifying what is relevant to an input out of everything in its context**
- **Add more meaning to the representation of an entity by using the representation of its context**

But why ?

Show's last season

Chicken didn't cross the road because it was

I hate rainy season

Chicken didn't cross the road because it was

Attention

Block used in transformers that fulfils two responsibilities:

- **Identifying what is relevant to an input out of everything in its context**
- **Add more meaning to the representation of an entity by using the representation of its context**

But why ?

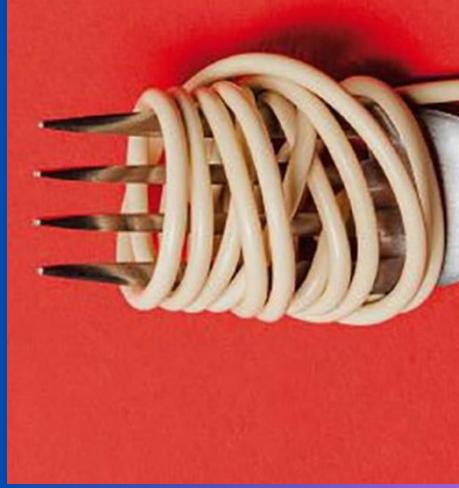
Show's last season

Chicken didn't cross the road because it was
happy on this side itself

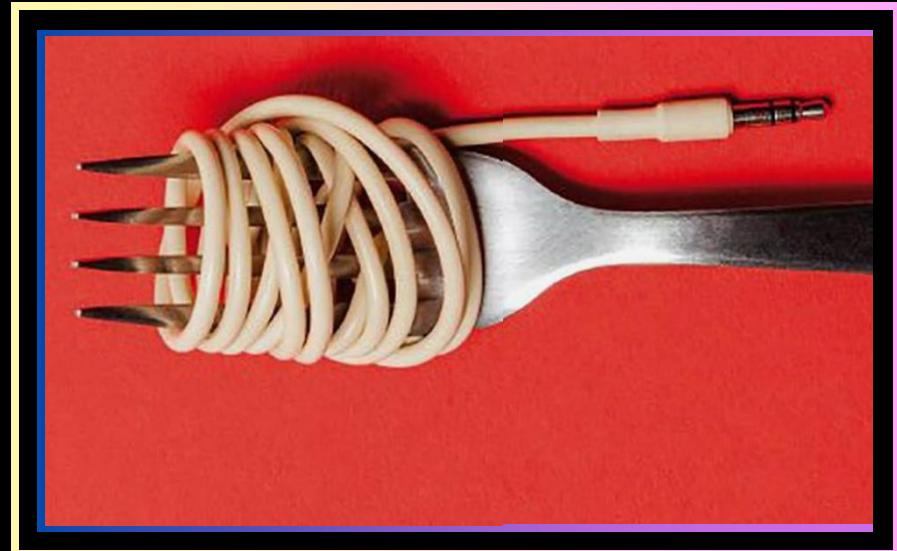
I hate rainy season

Chicken didn't cross the road because it was
too wide

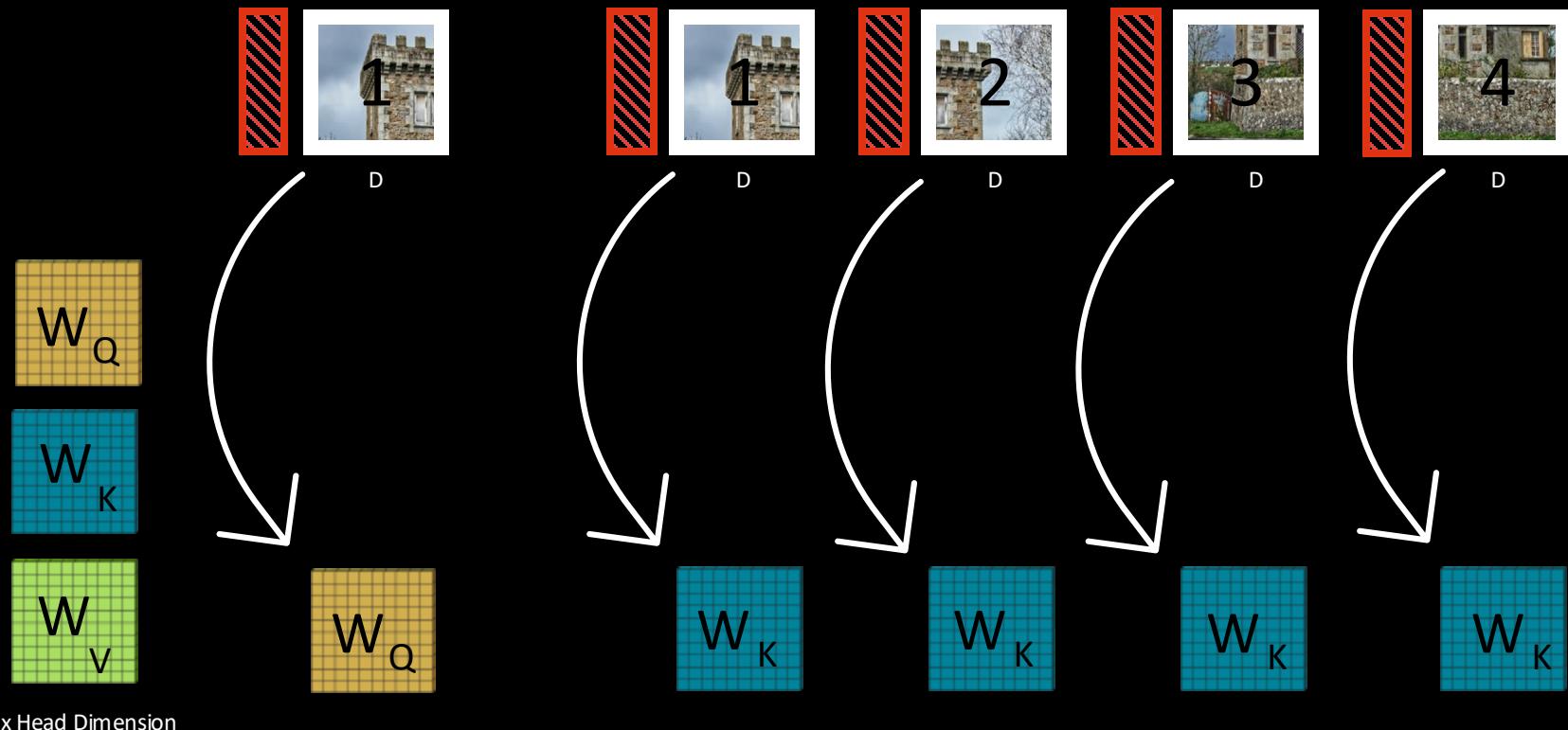
Attention



Attention



Determining Relevance

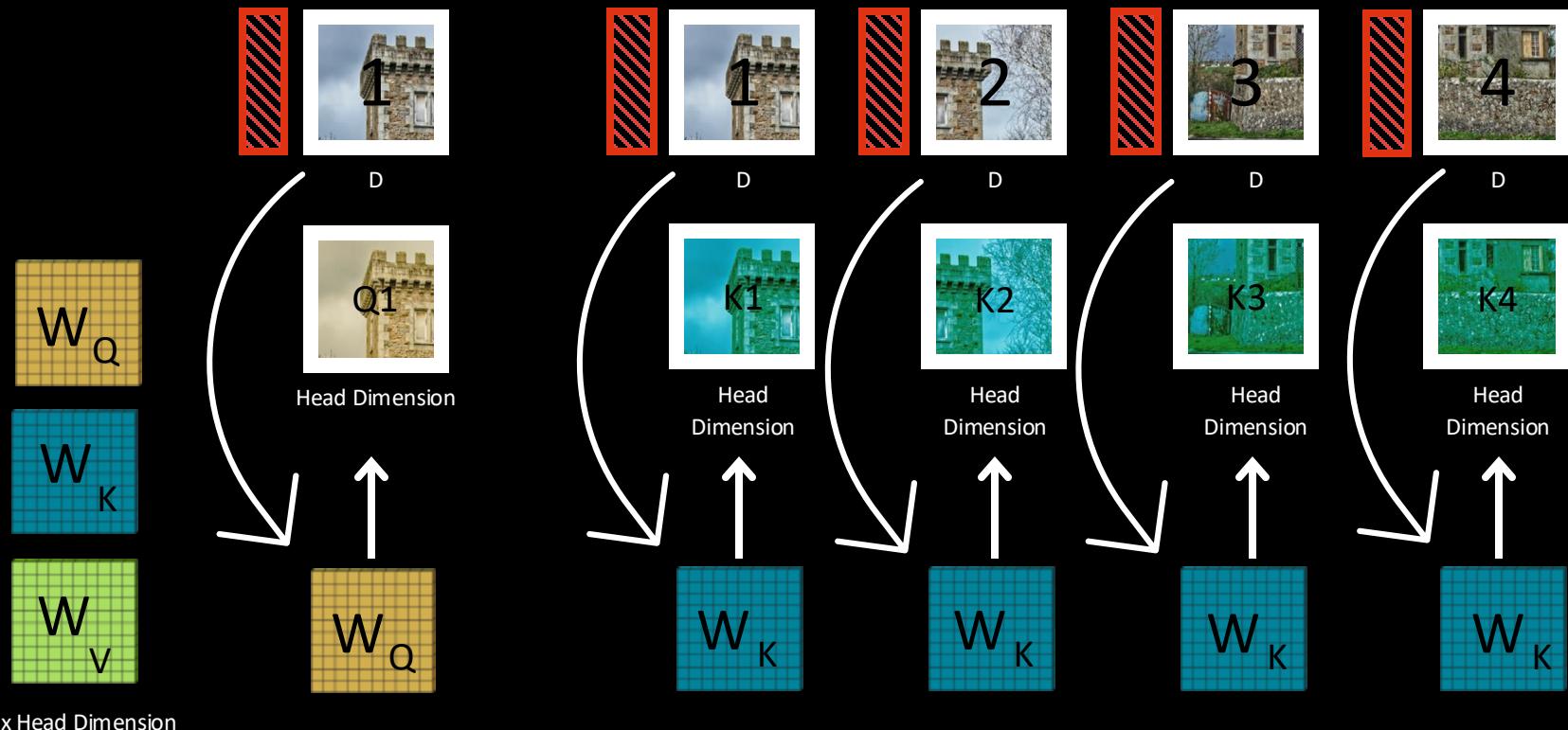


Query : Input representation. We are trying to quantify how much is every context item relevant to this representation

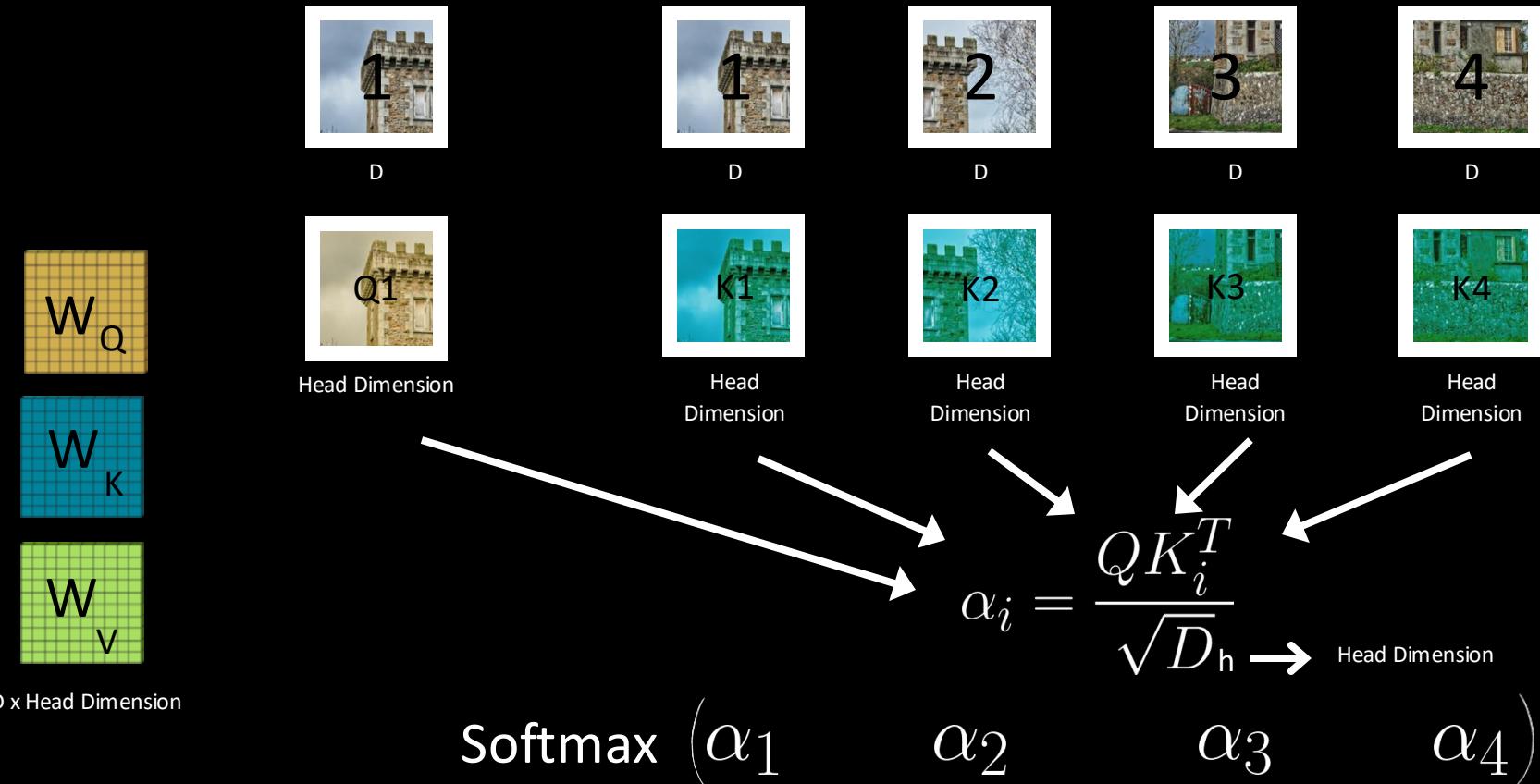
Key : Context representation. Used to quantify relevance to the query representation

Value : Context representation which will be used to add understanding of relevant context into the input

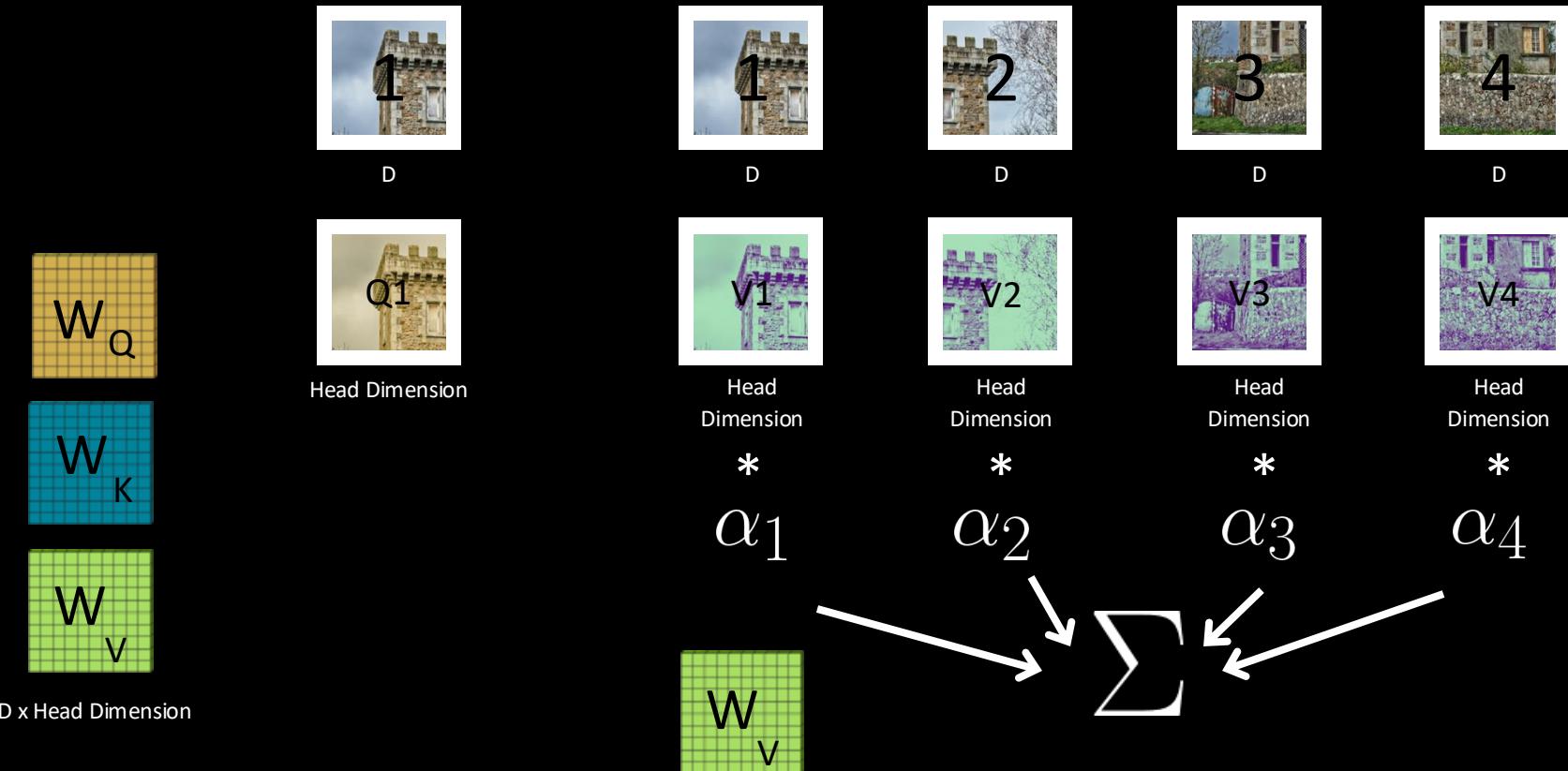
Determining Relevance



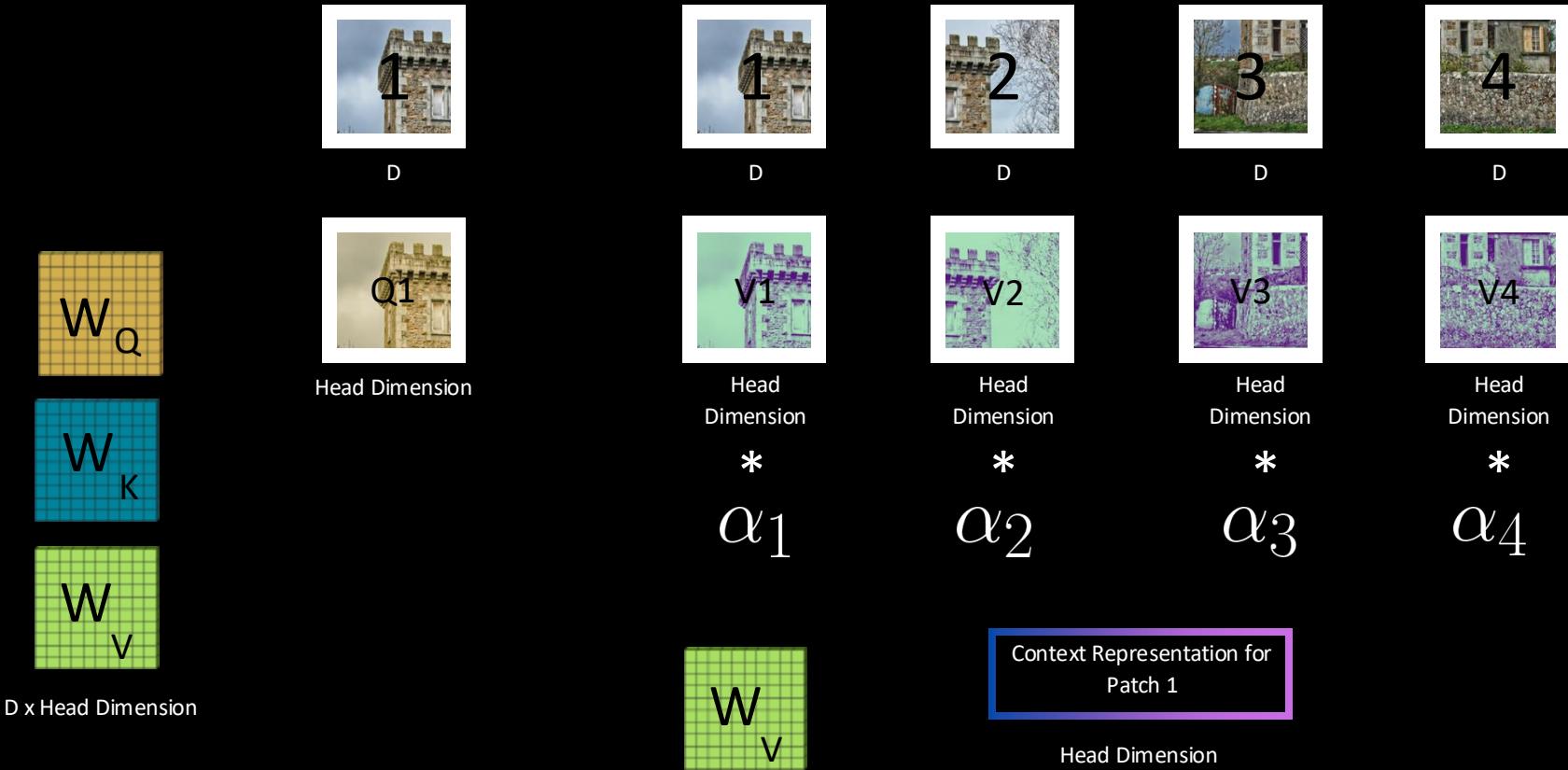
Determining Relevance



Context-Aware Input Updating



Context-Aware Input Updating



Context-Aware Input Updating (For ALL Patches)

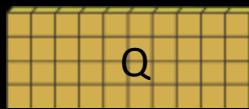
D

D

D

D

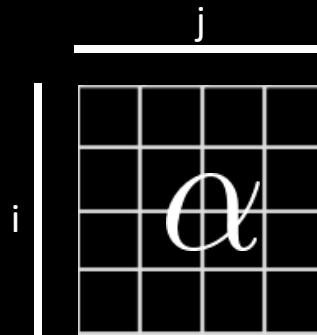
$D \times \text{Head Dimension}$



$4 \times \text{Head Dimension}$

$4 \times \text{Head Dimension}$

$\text{Head Dimension} \times 4$



4×4

$\alpha_{i,j}$

Similarity between
query representation
of i th patch
and
key representation
of j th patch

Context-Aware Input Updating (For ALL Patches)

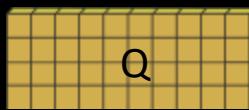
D

D

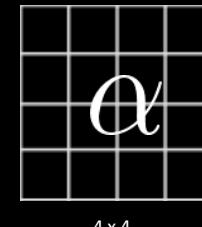
D

D

$D \times \text{Head Dimension}$



$4 \times \text{Head Dimension}$



4×4

$4 \times \text{Head Dimension}$

Context Representation for
ALL Patches

$4 \times \text{Head Dimension}$

Multi Head Attention

D

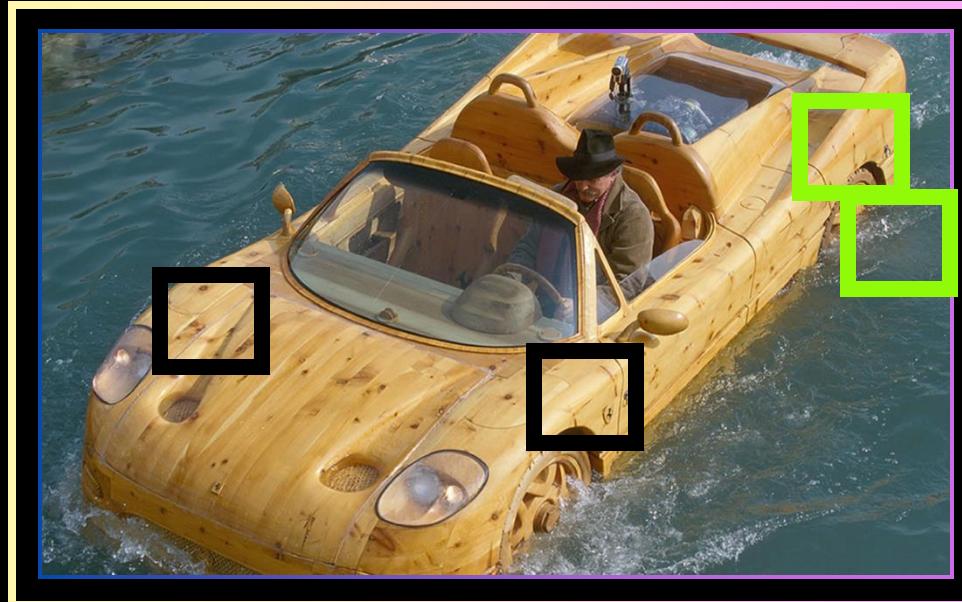
D

D

D

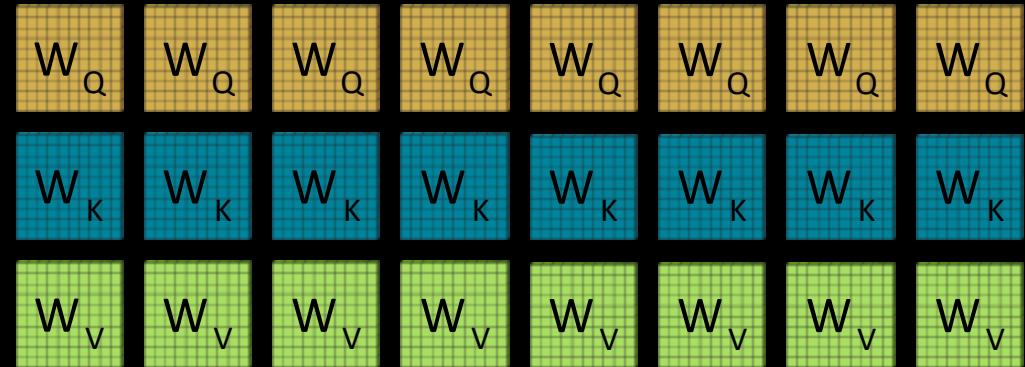
$4 \times D$

Why ?

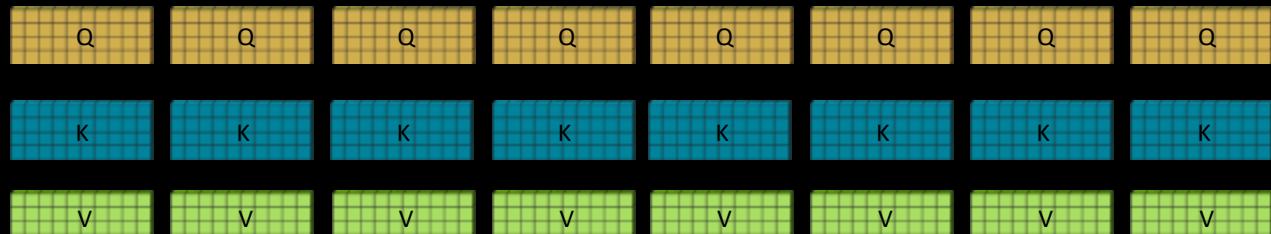


There can be multiple factors of relevance

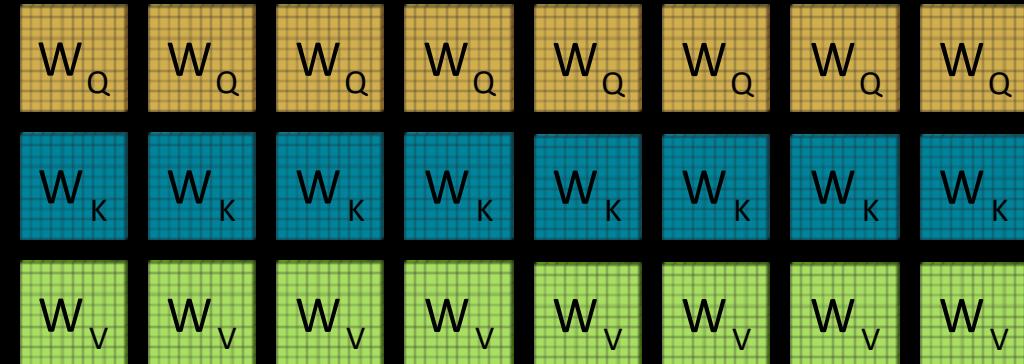
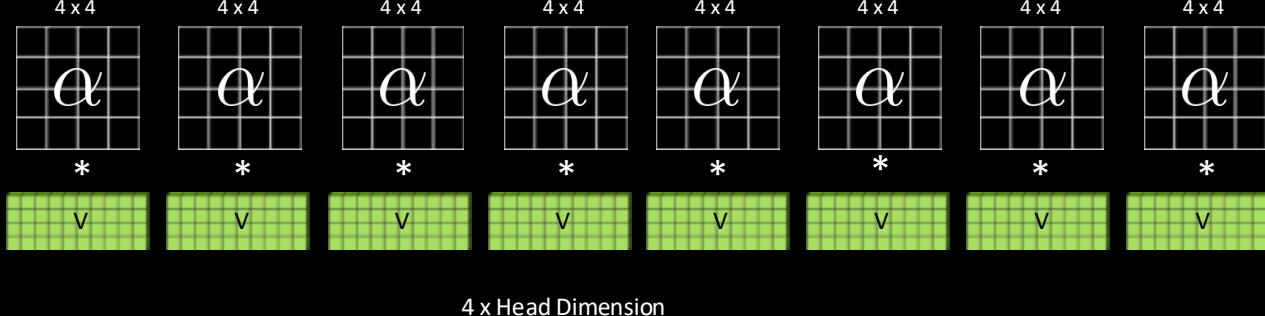
Each head has unique weight matrices, despite the uniform color representation

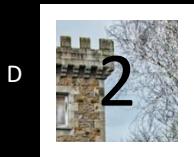
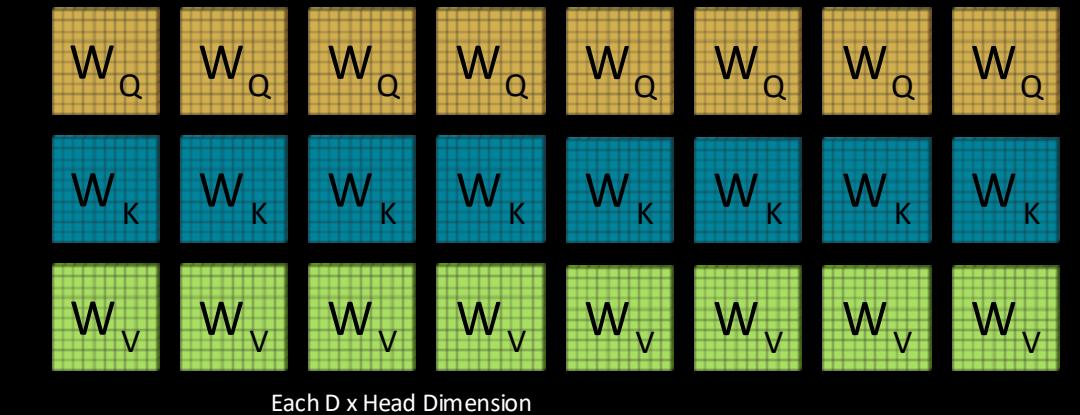
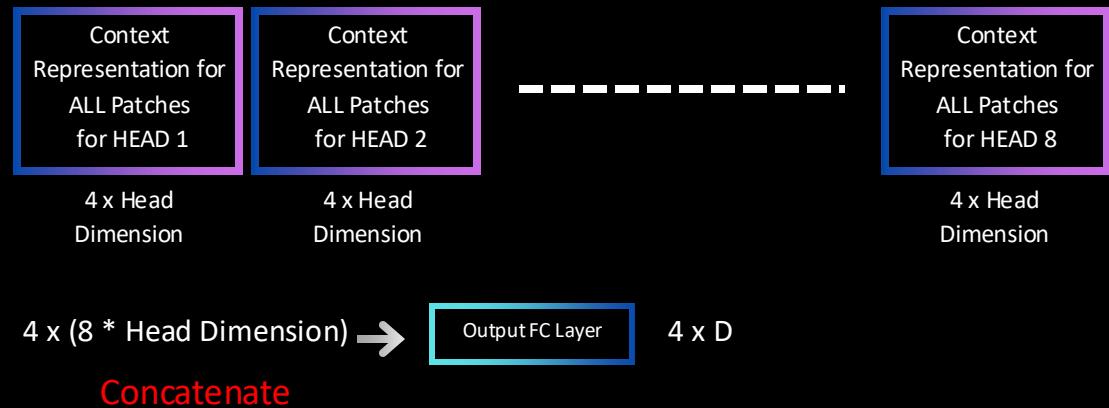


Each D x Head Dimension

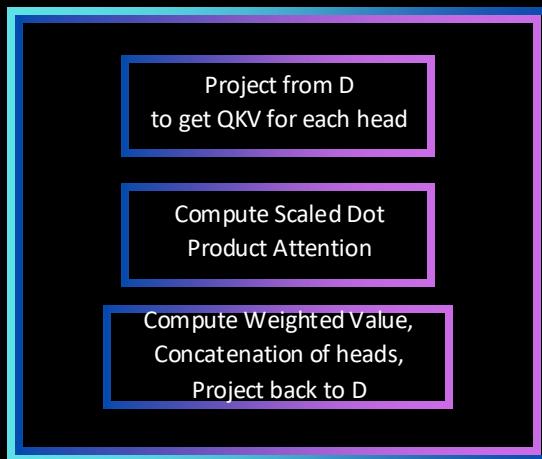
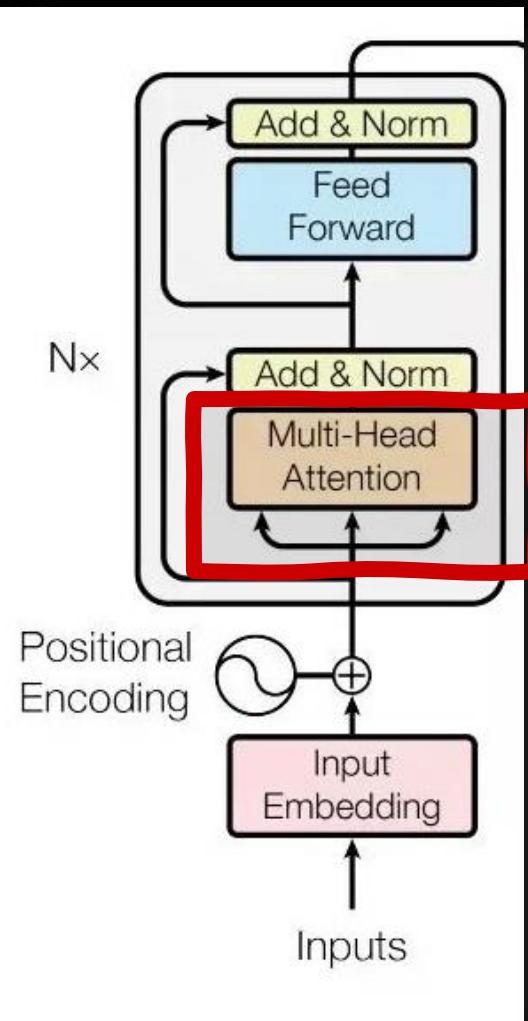


4 x Head Dimension

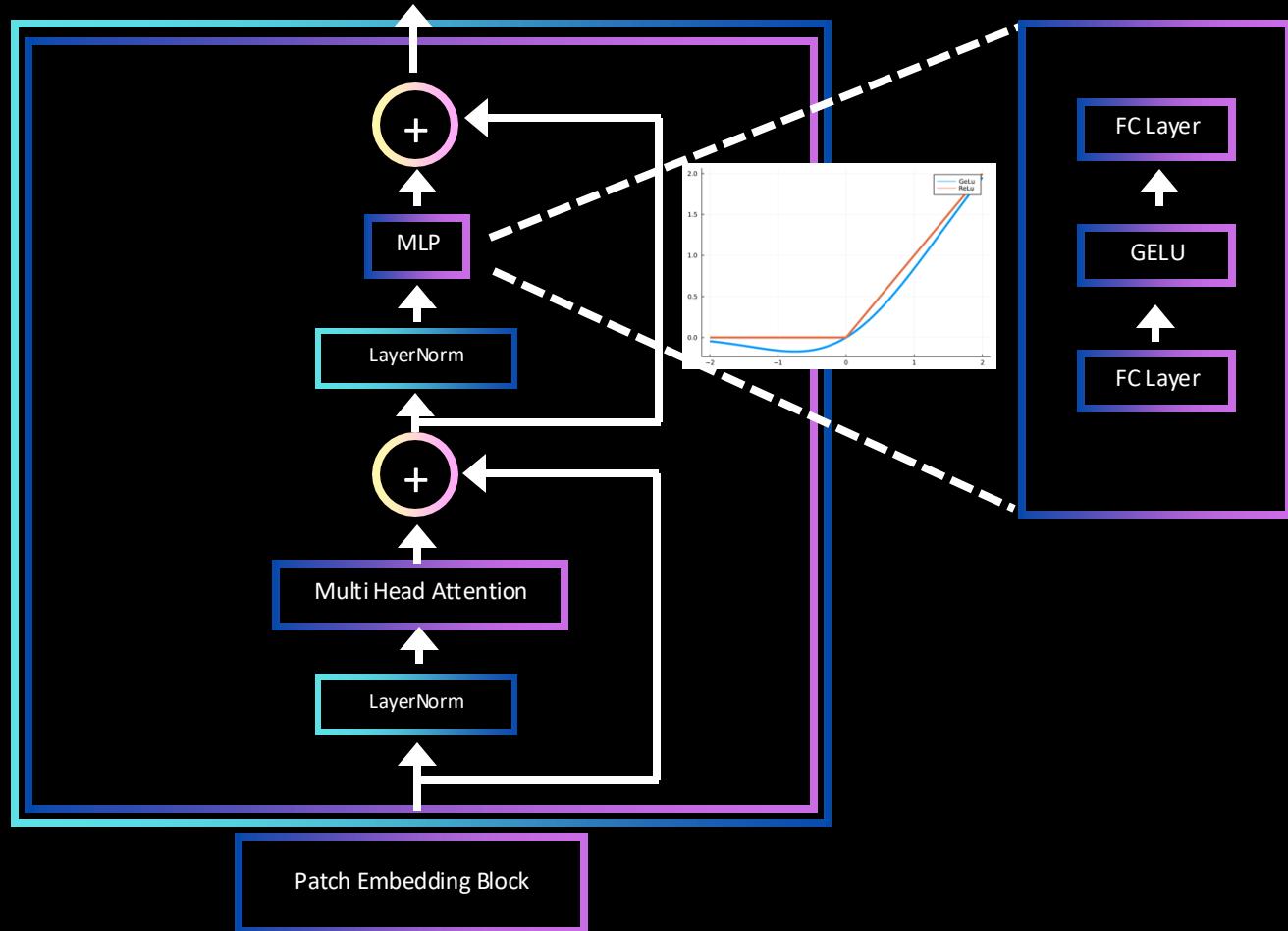




Self Attention Block



Transformer Block



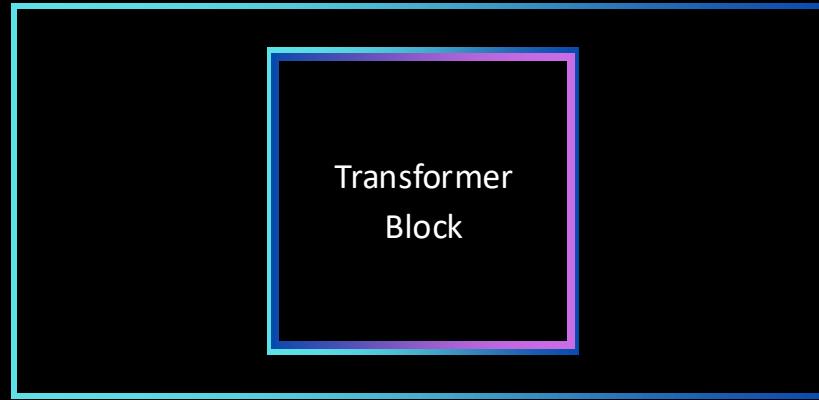
Classification Scores

FC Layer

CLS

x Layers

Transformer
Block



Patch Embedding Block

ViT

CNN

Strong inductive bias
(translation invariance)

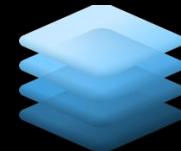
Not too data-hungry

Hierarchical structure
(receptive field)

CNNs

No strong inductive bias

Data-hungry



Global structure
(attention)

ViT

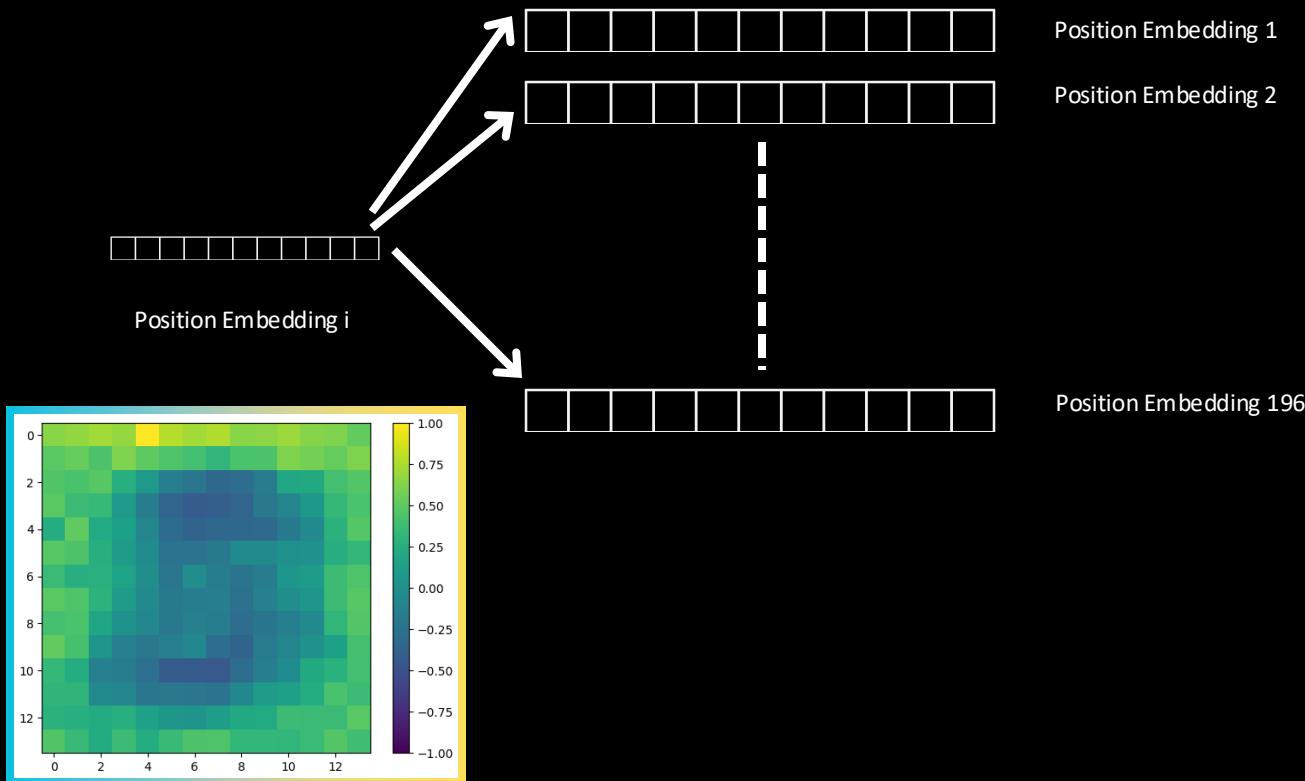
Attention Map Visualization

Source: Exploring Explainability for Vision Transformers
(Jacob Gildenblat)

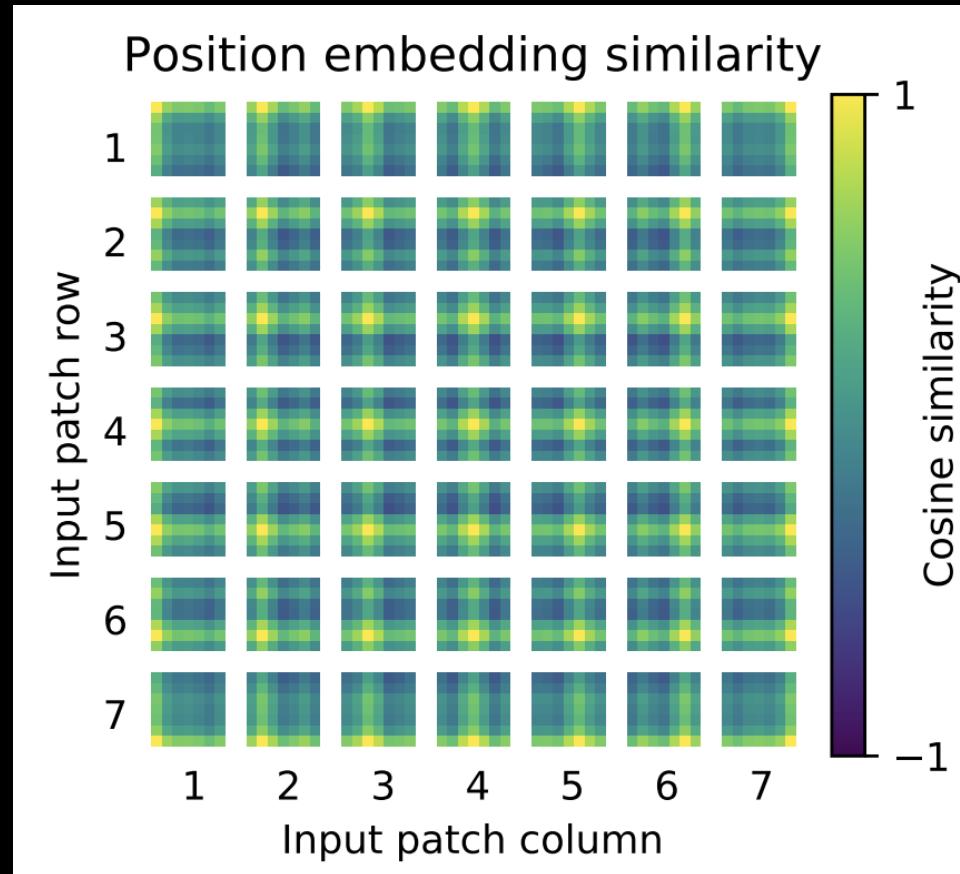
2020

Quantifying Attention Flow in Transformers

Position Embedding Visualization



Position Embedding Visualization



References

Books & Core Reading

- **Goodfellow, I., Bengio, Y., & Courville, A. (2016).** *Deep Learning*. MIT Press. → Chapter 6: Deep Feedforward Networks

Courses & Tutorials

- **Alexander Amini.** *Introduction to Deep Learning*, MIT 6.S191
- **Ali Farhadi.** *Introduction to Deep Learning*, CSE 490G1/599G1
- **Daniel Cremers.** *Introduction to Deep Learning*, IN2346
- **Sergey Levine.** *Designing, Visualizing, and Understanding Deep Neural Networks*, UC Berkeley, CS W182/282A

References

Key Papers

- **He, K., Zhang, X., Ren, S., & Sun, J. (2016).** *Deep Residual Learning for Image Recognition*. CVPR. → Introduces **ResNet**
- **Ioffe, S., & Szegedy, C. (2015).** *Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift*. ICML. → BatchNorm
- **Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016).** *You Only Look Once: Unified, Real-Time Object Detection*. CVPR. → Original **YOLO** paper
- **Dosovitskiy, A., et al. (2021).** *An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale*. ICLR. → Vision Transformers (ViT)
- **Vaswani, A., et al. (2017).** *Attention Is All You Need*. NeurIPS. → Foundational Transformer

References

Additional Useful Links

- **CS25: Transformers United V4** (YouTube)
→ https://www.youtube.com/playlist?list=PLoROMvdy4rNiJRchCzutFw5ItR_Z27CM
- **CS231n: Convolutional Neural Networks for Visual Recognition**
→ <https://cs231n.github.io/convolutional-networks/>
<https://cs231n.github.io/understanding-cnn/>
- **The Illustrated Transformer** by Jay Alammar
→ <https://jalammar.github.io/illustrated-transformer/>

Data Augmentation Libraries:

TorchVision, Kornia, Albumentations

→ Check their official documentation and GitHub repositories