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Deep Learning for Real World Problems

Autonomous Driving

‘r.
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Neuron and Synapse

Synapse

/

Synaptic Terminals

Cell Body

/
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Neural Network
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Activation Functions

logistic

-1}
- ) = W1 [

Good ones

-

REctified Linear
Unit (RELU)

|[x'- A ]
L [ I




Fully Connected (Dense) Layer

2

Each output neuron is connected to all previous

Woo W,y
layer neurons ‘ ‘ ‘

* Shape of Tensors:
Input Features X : (1, Cj)

Output Features Y : (1, Cy)
Weights W : (C,, Ci)
Bias b : (Co,) G Co

Ci| rr-




Scaling Issue in Fully Connected Layers

The number of weights grows quadratically with the number of neurons

Complexity of handling image data
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Convolutional Neural
Networks and Intuition




Intuition Behind Convolution Layer (1)

Restricting the degrees of freedom
o A structured layer to process a small region with fewer
weights (many useful features are local)

Layer 1: Layer 2:
edge detectors? beak» wing?



Intuition Behind Convolution Layer (1)

Restricting the degrees of freedom
o A structured layer to process a small region with fewer
weights (many useful features are local)

/Eﬂ
v",_ .

N .~
W N\

detector




Intuition Behind Convolution Layer (2)

Restricting the degrees of freedom
o Weight sharing: using the same weights for different parts
of the image

“upper-left
beak” detector

“middle beak”
detector




Transitioning from Fully Connected to
Convolution Layer

e Local Connectivity

e Weight Sharing

e Multiple Feature Detectors




Connectivity Pattern: Fully Connected vs. Convolution Layer

Image is 128 X 128 X 3 = 49,152
First layer is 64-dim FC layer
64 X 49,152 =~ 3,000,000

Patchis 3 X3 X 3 = 27
First layer is 64-dim Convolution layer
64 x27 =1728




Convolutions?

Kernel




Convolution on Images”?




Filter Effects

Edge detection ' : Box mean
[—1 ~1 —1‘ ‘_; 1M1 1‘

51 1 1

-1 8 -1 9

-1 -1 -1 1 1 1

Gaussian blur
8 %]
|2
16 1 2 1




Filter Effects

Edge detection ' ' Box mean
-1 -1 -1 | \ 11 1 1‘

-1 51 1 1
9
: 1 1 1

Gaussian blur
8 %]
|2
16 1 2 1




Convolutions on Volumetric Images
width height depth

in>g<; 3222]{/

/

filter 5><5>|

Convolve filter with image

i.e., ‘slide’ over it and:

— Apply filter at each location
— Compute dot product

Images have depth: e.g.. RGB — 3 channels

Slide from 12DL: Prof. Cremers



Convolutions on Volumetric Images

32x32x3 image (X)

\ filter (weight tensor w)

number at time:
equals to dot product between
/ filter weights w and x; — th chunk
of the image. Here: 5.5.3=75-dim
+bias

TN

(5x5x3)x1 (5%5x3)x1 1

Slide from 12DL: Prof. Cremers



Convolutions on Volumetric Images

Activation map
32x32x3 image (also feature map)

5x5x3 filter

Slide over all spatial locations x;
and compute all output 7;
there are 28%x28 unique
locations




Convolutions on Volumetric Images

32x32x3 image

/ 5x5x3 filter Feature maps

Let’s apply a second filter
with different weights!




Convolution Layer

. .« - Filter width, height
32x32x3 image Convo""‘“on Layer Number of filters

[ |
/ Feature maps
32 Layer

//// 28
5 i W

Let’s apply *six* filters, each with different weights:

Convolution




Convolution Layer

32x32x3 image
Also 6-dim bias vector:
BEEEER Feature maps
Convolution
32 Layer

//// 28
5 i W

Let’s apply *six* filters, each with different weights:




Stride

How far to move filter (kernel) between applications

Increasing stride downsamples the image




Stride

How far to move filter (kernel) between applications

Increasing stride downsamples the image

Input: NxXN
Filter: FXF

Stride: S

Output: (N ; F n 1) (N ; F




Padding

Convolutions have problems on edges




Padding

Convolutions have problems on edges




Padding

Convolutions have problems on edges
Pad: add extra pixels on images

0
£ 0
3
g- 0
o) 0
S 0
+
N~ 0
i
% 0
g 0
- 0




Padding

Convolutions have problems on edges
Pad: add extra pixels on images

Padding maintains feature map dimensions after convolution

Conv + Conv +
RelU RelU

=] =

32 5f||ters 28 8 filters 24 12 filters 20
5><5 5 5X5 8 5X5X8 12

X 5
The spatial 5|ze would decrease too rapidly (32 — 28 - 24 - 20)




Pooling Layer

Processing: pool values over a region of the feature map

Output: a reduced version of the feature map by a factor of the stride
Pooling types: Max, Average

Most common: 2X2 maxpooling, stride of 2

Input feature map (single slice)

7/ 3 5 2 2x2 maxpooling ‘Pooled’ output
and stride of 2

7 I 6 :: 8 6
9 3 9 9 9
8 5

8
4
0




Pooling Layer

Introduces (small) translation invariance

. 1/1]1]1 N
\ /000 ’7 7 I—I
-_— 1000 |
ERRN 2| e J
Conwv Filter of Ouput of Conv Output of Max
Input image of letter 'C' size:(4,4) layer Pooling layer
Convolutional Layer
1111 \
SR \ 10]0]0 _] P u
| —/ 1({o/o|o0
1.1‘1.1 ‘ A
) Conv Filter of Ouput of Conv Output of Max
!gpg;#tn;ggo%rlletter size:(4.4) layer Pooling layer

Convolutional Layer



CNN Prototype for Image Classification

Feature Extractor : Convolution+ RelU activations+ Pooling (repeated)
Classification Head : Flattening— FC Layers—Output Classification

Convolution Neural Network (CNN)

Pooling Pooling Pooling

[ITTITTTTTTIT]

Activation
Function

Convolution Convolution Convolution

Kernel R;LU RgLU R;'LU Flatten
Layer Full
ully
L—Connected———

Layer

Feature Extraction Classification Probabilistic
Distribution

Feature Maps




Softmax: Multi-Class Classification

Softmax: the normalized exponential function of all scores (logits)

® x represents the input features (final layer) e

. . . g =1X) =
® S;is unnormalized score of class i (final layer) p(y %) ﬁ'{:l e°]

Output
probabilities Classes
(P)

Input image Logits (L) Softmax

——

| p(y = il%) = 55—
j=1€1




Cross-Entropy Loss for Multi-Class Classification

" 1y, is the one-hot encoded label for class i

p; is the predicted probability of class i

K
L=- z yilog(p;)
i=1

cat dog

horse

0.71 | 0.26

Range of negative log-likelihood

0.04

0.02 | 0.00

0.98

—log(a) at the
correct classes

0.34

0.49 | 0.49

0.02

The correct class is
highlighted in red

0.02

0.71

Total: 1.07




Cross-Entropy Loss for Multi-Class Classification

K
L=- z yilog(p;)
i=1

The gradient of loss w.r.t. logit

oL

For the correct class j (yj =1)

o _ 4
88j_pj_

y; is the one-hot encoded label for class i
p; is the predicted probability of class i

cat dog

horse

0.71 | 0.26

0.04

0.02 | 0.00

0.98

—log(a) at the
correct classes

0.34

0.49 | 0.49

0.02

The correct class is
highlighted in red

0.02

0.71

Total: 1.07




Cross-Entropy Loss for Multi-Class Classification

" y,iis the actual label for the n-th sample for class i

" p,iis the predicted probability for the n-th sample of class i
" N is the number of samples in a batch

cat dOg h orse

0.7110.26 | 0.04 0.34

yn,ilog(pn,i) | —log(a) at the

correct classes
0.02 | 0.00 | 0.98 > 0.02

0.49 | 0.49 | 0.02 0.71

The correct class is

. : Total: 1.07
highlighted in red




CNN Learns Hierarchical Features

Patches from Input Image Layer 1 Structure

The first hidden layer learns to identify basic
structural elements such as edges and color blobs

Layer 5 Structure

CNNs learn hierarchical structure after several layers

Visualizing and Understanding Convolutional Networks




ptimizing Neural
Networks




Loss Optimization

Finding network’s parameters (weights) that achieve the
lowest loss

n
1 . .
W* = arg mMi/ngz L(f(x(‘); W), y(‘))
i=1

W* = arg mmi/n](W)

W = {W(O), W(l), }




Loss Optimization

Randomly pick a point (wy, w;) )

oJ(W)
ow

Compute gradient,

Take a small step in the opposite
direction of the gradient
Repeat this process until convergence




Mini-Batch Gradient Descent

Use a suitable method (e.g., Xavier or He initialization) to
ensure stable variance of activations and gradients.

e Algorithm:

o Initialize weights randomly ~V'(0, %)

o Loop until convergence: ppRssy” =
o Pick a mini-batch of B data samples P -

O Compute gradient, OJW) _ Ly 9JkW) MR -

ow B k=1 ow | -';:,.i... »
Update weights, W « W — « ag(x/) 1 ‘
o Return weights "o

@)

Better estimation of true gradient and fast to compute,
smoother convergence




Backpropagation: Chain Rule in Action




Backpropagation: Chain Rule in Action

W) _yw) 9y
aWZ B 0)7 0W2

/ S

Let's apply chain rule !




Backpropagation: Chain Rule in Action

oJ(w) aJj(W) L9y
ow; 0y 0wy

/'

Apply chain rule




Backpropagation: Chain Rule in Action

aj(w) aj(w) ) ay . 0z,

awl B (3)7 621 (3W1




Gradient Dynamics in Deep Network Training

0 _ 0]  Ohy Ohyy Oy My
aW1 ahn 6hn 1 5hn 2 6h1 6W1

In most cases, there are two possible solutions:

S

We get if M)l <1 o Vanish!
@ - !
e get zero | h_. | . anis
T
e We get infinity if |5, ) >1 - oh Explode!
1— ) § i—

e We only get a reasonable answer if the numbers are dll
close to one



Limitations of Gradient Descent + Alternatives

Challenges with Vanilla Gradient Descent:

- Oscillations due to anisotropic curvature of the loss surface
- Slow convergence

0>>

Source: A Ng

We take multiple back and forth

steps in this direction. We’d ideally like to move faster in this direction



Limitations of Gradient Descent + Alternatives

Gradient Descent with Momentum:

- Smoother updates, dampens oscillations
- Speeds up convergence

Gradient descent

vy = Yvi—1 + aVJ (W)

Wt+1 — Wt — Ut A - >

Gradient descent with momentum

[Sutskever et a., ICML13] On the importance of initialization and momentum in deep learning



Limitations of Gradient Descent + Alternatives

Adam (Adaptive Moment Estimation) Optimizer:

- Combines momentum (first moment of gradients) with adaptive learning
rates based on the second moment (squared gradients)
- Popular in deep learning due to its robustness

my = Bimy—1 + (1 — 1) VI (W) (First moment: gradient mean)
vy = Bavi 1+ (1 — Bo)(VI(W,))? (Second moment: gradient variance)
,\ my N (% i

=M™ 5= Bias-corrected
My = j Uy T (Bias-corrected)

~

Ty By ~ 0.9, By ~ 0.999, € ~ 108
Wit = W . 1 , B2 :
t+1 t « \/’E—l» £

[Kingma et al,, ICLR'15] Adam: A method for stochastic optimization



Learning Rate Tuning

model gets stuck in false

néeeH rainivag teRlpfium

. Good learning rate




Regularization &
Data Augmentation




Over-and Underfitting

Underfitted Appropriate

Source: Deep Learning by Adam Gibson, Josh Patterson, O‘Reily Media Inc., 2017



Over-and Underfitting

Training/ Validation curve

— - Training error
Underfitting zone| Overfitting zone

- (Generalization error

Optlmal Capac1ty Credits: Deep Leaming. Goodfellow et al.

Capacity




Over-and Underfitting

Training/ Validation curve

r

Underfitting zone

Overfitting zone

Train

How can we
prevent our model

— Geney from overfitting?

™

J

|
Regularization

Optimal Capacity

Capacity

Credits: Deep Leaming. Goodfellow et al.




Regularization
* Loss function L(y,9,w) = Y1~ (¥; — ¥i)? + AR(w)

* Regularization techniques

L2 regularization Add regularization
L1 regularization term to loss function

Dropout

Early stopping




Regularization Example
* Input: 3 features x = [1,2,1]

* Two linear classifiers that give the same result:

w; = [0,0.9,0] Ignores 2 features

w,=10.15,0.75,0.15] Use all features




Regularization Example (L2)

* Loss function L(y,y,w) = ?zl(xiwji — yl-)z + AR(w)

* L2regularization R(w) = ||w|5 = X7, w!

R(w;) =0+ 0.9%24+0=0.81

R(w,) = 0.15% + 0.75% + 0.15% =/ 0.6075 | Minimization

Promotes weight
uniformity

x = [1,2,1],w, = [0,0.9,0], w, = [0.15,0.75,0.15]




Regularization Example (L1)

* Loss function L(y,y,w) = ?zl(xiwji — yl-)z + AR(w)

* Liregularization R(w) = [|w]|; = XL Iw;l
R(Wl) — 0 + 09 + 0 = 09 Minimization

enforces sparsity

R(w,) = 0.15 + 0.75 + 0.15 = 1.05

x = [1,2,1],w, = [0,0.9,0], w, = [0.15,0.75,0.15]




Regularization: Effect (L1)

* Dog classifier takes different inputs

Furry
\ _ L1 regularization

Has two evyes #
YeSf— o . | encourages the model

- 7 WA to rely on only a few
Has a tail — £ F 4 7

/ | » key features
Has paws / A

Has two ears




Regularization: Effect (L2)

* Dog classifier takes different inputs

Furry ~

L2 regularization
| leverages dll
N informationto

/ . 48 « influence model
learning

Has paws //

Has two ears”

Has two eyes

Has atail —




Data Augmentation: Motivation

Google e

All Images Videos WS hopping More Settings Tools

- 4 < e K — _e |
-2 . ‘ ’)ﬁs . : \Kgfp/ 22 :i ’ﬁ " ,';“4 :-..L:f”f‘*w

Cute And Kittens Clipart Drawing

Appearance

Cute Baby

M R

White Cats And Kit

llHlumination




Data Augmentation

* A dassifier has to be invariant to a wide variety of transformations
* Augmentation: simulating plausible transformations
@ Libraries: torchvision.transforms, Kornia, Albumentations

Horizontal Vertically +45 Rotation -45 Rotation Blur

Noise added Darker Grayscale Crop

Augmented Images




Valid & Plausible Transformations for Data Augmentation
Any operation that does not alter the original label

Original Digit 6 180° Rotated Digit 6

o
e
o
]
o

Light H

augmentation

Macenke

Vahadane augmentation




Data Augmentation: Advanced (Mixup & Variants)

&= Azi+ (1= N)zj

Image =i 7 /\
Original
N 5;
[1.0, 0.0]

Label vi samples

o Image =

/\ MixUp —
\: g
\ >

4 [0.6,0.4] LabelV
Image II }\ Cat  Dog

y

, ! Mixup Cutout Cutmix
Label vJ [0.0,1.0] — . :
g =My 4 (1= Ay

Mixup: Beyond Empirical Risk Minimization




Data Augmentation: Advanced (RandAugment)

ShearX

Magnitude: 17

ShearX

Magnitude: 28

Original ShearX

AutoContrast

AutoContrast

AutoContrast

transforms = [

"Identity’, ’AutoContrast’, ’'Equalize’,
"Rotate’, ’Solarize’, ’'Color’, ’'Posterize’,
"Contrast’, ’'Brightness’, ’Sharpness’,

" ShearX’, ’ShearY’, ’'TranslateX’, ’"TranslateY’]

def randaugment (N, M) :
"""Generate a set of distortions.

Args:
N: Number of augmentation transformations to
apply sequentially.
M: Magnitude for all the transformations.

nnn

sampled_ops = np.random.choice (transforms, N)
return [ (op, M) for op in sampled_ops]

Figure 2. Python code for RandAugment based on numpy.

RandAugment: Practical automated data augmentation with a reduced search space




Vision Benchmarks,
ResNet, BatchNorm &
Transfer Learning




Key Datasets as Benchmarks for Image Classification

e Example datasets:

O  MNIST (handwritten digits), 1990s-today: 60,000 images
© CIFAR 10 & CIFAR 100, 2009: ~60,000 images
O ILSVRC (ImageNet-1K), 2009: 1.2 million training images, 1000 categories

CIFAR - 10

==l - BN -

el TP

Tml NES ¥ ERE ImageNet- 1K
PECHNERE P coopems s

S SR :
LSRRGS =

. o N ¢ e ‘25 ]
WAL O MELER S ey mogeNet- 21K

Eﬂubﬁi 52 Y, I i LAION- 400M




CNN Architectures: Accuracy vs. Complexity

Inception-v4

Xception
ResNet-101 ResNet-152

ResNet-50 ' .
enseNet-121 VGG-16 VGG-19

ResNet-34

MobileNeTv2
MobileNet-v1

1 ResNet-18
00’

GooglLeNet
ENet
P fd-MobileNet

BN-NIN
ShuffleNet

X
>
O
©
—
=
(U]
[v]
@©
o
Q
(]
|_

95M 125M - 155M

SqueezeNet
BN-AlexNet

AlexNet

2'0 3'0
Operations [G-Ops]




Residual Networks (ResNets)

Plain Net
X

\ 4

Weight Layer

Any stack of
two layers RelU »
Weight Layer

ReLU

\ 4

H(x)

2016

Deep Residual Learning for Image Recognition

Residual Net
e

v

Weight Layer

F(x) ReLU

4

Weight Layer
|

RelLU

7

Hx)=F (x) +x



ResNets

Skip Connection

X3 conv, et

3conv, 256, /2 |
256
X conv,Sgl‘Z,/i i '."u.
512
512 |
x3cony, 512 |

[ 3x3cony, 512

3x3

| 3x3
L 7

ﬂq ] et
[ 38 conv,512_
T
\
R ’

3x3
T
L

©
=1
B
wv)
U
i
.
[}
>
©
i
<
)

Why is this model important?
o Frequently used today

o Skip connections and use of batch normalization

o Use of global average pooling instead of FC layers
1 x 1 x Depth




Depth vs. Performance

dashed: train
solid: test

ResNet-20

ResNet-32

ResNet-44
==ResNet-56
==ResNet-110

20-layer

plain-32

plain-44
— plain-56
_ 0 1
iter. (1e4) iter. (1e4)

CIFAR-10 Experiments




Batch Normalization

Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift

Sergey loffe
Christian Szegedy
Google, 1600 Amphitheatre Pkwy, Mountain View, CA 94043

Reduces “internal covariate shift”

ining

Tra

Input Distribution

Layers need to continually adapt
to the newer input distributions.

ining

Tra

Input Distribution

Abstract

Training Deep Neural Networks is complicated
by the fact that the distribution of each layer's
inputs changes during training, as the parame-
ters of the previous la; change. This slows
down the training by requiring lower learning
rates and careful parameter initialization, and
makes it noto sly hard to train s with
saturating nonlinearities. We refer to this phe-
nomenon as internal covariate shift, and ad-
dress the problem by normalizing layer inputs.
Our method draws its strength from making nor-
malization a part of the model architecture and
performing the normalization for each training
mini-batch. Batch Normalization allows us to
use much higher learning rates and be less care-
ful about initialization, and in some cases elim-
inates the need for Dropout. Applied to a state-
of-the-art image c! ication model, Batch
malization achieves the same accuracy with 14
times fewer training steps, and beats the original
model by a si nt margin, Using an ensem-
ble of batch-normalized networks, we improve
upon the best published result on ImageNet clas-
sification: reaching 4.82% top-5 test error, ex-
ceeding the accuracy of human raters.

minimize the loss

N
O = arg I'Igl z £(x;,0)

where x; .y is the training data set. With SGD, the train-
ing proceeds in steps, at each step considering a mini-
batch x; _ , of size m. Using mini-batches of exampl
as opposed to one example at a time, is helpful in se
Fmt‘ the gradient of the loss over a mini-batch
is an estimate of the gradient over the
quality improves as the batch size in-
Second, computation over a mini-batch can
ient than m computations for individual ex
ples on modern computing platforms.

While stochastic gradient is simple and effective, it requires
careful tuning of the model hyper-parameters, specifically
the learning rate and the initial parameter values. The train-
ing is complicated by the fact that the inputs to

are affected by the parameters of all preceding layers — so
that small changes to the network parameters amplify as
the network becomes deeper.

The change in the distributions of layers’ inputs presents
a problem because the layers need to continuously adapt
to the new distribution. When the input distribut
learning system changes, it is said to experience covq
ate shift (Shimodaira, 2000). This is typically hapd




Batch Normalization

Standard Network

Reduces “internal covariate shift”

Normalizes activations batch-wise;
fully differentiable for backprop




Batch Normalization (Fully Connected Version)

Input: x : N X D - Per-feature
. | mean, shape is D

A 4 4

)2 Per-feature
std, shape is D

Normalized x,
Shape is N x D

v v Y

(mini-batch size) 22

D (num of features)




Batch Normalization (Fully Connected Version)

mean, shape is D

N
Input: x : N X D 1 = %in’j Per-feature
i=1

A 4 4

N

1 9 Per-feature
E Tij — Kj)

N ( s J

std, shape is D
i=1
By o Lig = Hj Normalized x,
1,7

0.72, 4+ e Shape is Nx D

Problem: What if zero-mean, unit
variance is too hard of a constraint?




Batch Normalization (Fully Connected Version)

Input: x : N X D e Per-feature
| mean, shape is D

2 Per-feature
std, shape is D

Learnable scale and

shift parameters: (Ti; — 1)

Vel § L % B Normalized x,
’ Shape is NxD

Output,
Shape is NxD

Learning 7 =0,
[ = 1 will recover the y, . —~.3, . 4 3.
identity function!




Batch Normalization : Test-Time

Input: x : N X D - Per-feature
. | mean, shape is D

Learnable scale and . N )2 Per-feature

shift parameters: Hi)" std, shape is D

v gD o “i,] ) Normalized x,
’ Shape is N x D

Output,
Shape is NxD

Learning 7 =0,
3 = i will recover the Vi
identity function!




Batch Normalization : Test-Time

(Running) average of
InpU'l': &£ i N X D ILL] — values seen during Pel‘-feCIfUI‘e

training mean, shape is D

Learnable scale and 5  (Running)averageof  po. feqture
;= values seen during

shift parameters: 7 raining std, shape is D

Y 5 ; A o Lig — My Normalized x,

/0]2_ + e Shape is NxD

A Output,
ViZi,; + B; Shape is NxD




Batch Normalization for ConvNets

Batch Normalization for Batch Normalization for

fully-connected networks convolutional networks
(Spatial Batchnorm, BatchNorm?2D)

X: N x D X: NxCxHxW

Normalize | Normalize | Il

u,o0: 1 x D U,o: 1xCx1lxl

Yy,B: 1 x D Y,B: 1xCx1lxl
y = yY(x-u)/o+p y = Y (x-u)/o+p




Group Norm

Instance Norm

M H

U
nuuuul

Other Normalizations
Batch Norm




Transfer Learning: Fine-Tuning for a New Task

(vgegl6, ResNet50, dataset: Oxford
Flowers 102

Pre-trained model Task specific )

Replace O
_p. . Feature
classification .
extraction
head

Model capable of
identifying 102
Flowers




Transfer Learning

Optimized learning with scarce data, freeze early layers, replace final
classification layers

Optionally fine-tune deeper layers if the new domain differs significantly




Versatile Applications
of CNNs

224 x 224 x3 224 x 224 x 64

12 TXTXE
7114 x 14 x 512

aaE

(—) convolution+ReLU
max pooling
fully nected+RelLU
softmax

Object Detection



Semantic Segmentation: Fully Convolutional Networks

o Network designed with only convolutional layers, handling arbitrary input sizes

o Uses downsampling and upsampling operations (tfranspose convolutions)

5 Recent approaches like U-Net and other encoder-decoder designs follow a similar
paradigm
Med-res: Med-res:
D, x H/4 x W/4 D,x H/4 x WI4 74
- Low-res: e
D,x H/4 x Wi/4

Input: High-res: High-res: ekt
3xHxW D, x H/2 x W/2 D, x H/2 x W2 Hx W

torch.nn.ConvTranspose2d




You Only Look Once (YOLO)

You Only Look Once:
Unified, Real-Time Object Detection

Joseph Redmon*, Santosh Divvala*, Ross Girshick¥, Ali Farhadi*f
University of Washington™, Allen Institute for AI*, Facebook AI Research¥
http://pjreddie.com/yolo/

Abstract

We present YOLO, a new approach to object detection.
Prior work on object detection repurposes classifiers to per-
form detection. Instead, we frame object detection as a re-
gression problem to spatially separated bounding boxes and
associated class probabilities. A single neural network pre-
dicts bounding boxes and class probabilities directly from
full images in one evaluation. Since the whole detection
pipeline is a single network, it can be optimized end-to-end
directly on detection performance.

Our unified architecture is extremely fast. Our base
YOLO model processes images in real-time at 45 frames
per second. A smaller version of the network, Fast YOLO,
processes an astounding 155 frames per second while
still achieving double the mAP of other real-time detec-

prs. Compared to state-of-the-art detection systems, YOLO

1. Resize image.
2. Run convolutional network.
3. Non-max suppression.

Figure 1: The YOLO Detection System. Processing images
with YOLO is simple and straightforward. Our system (1) resizes
the input image to 448 x 448, (2) runs a single convolutional net-
work on the image, and (3) thresholds the resulting detections by
the model’s confidence.

methods to first generate potential bounding boxes in an im-
age and then run a classifier on these proposed boxes. After
classification, post-processing is used to refine the bound-
ing boxes, eliminate duplicate detections, and rescore the
boxes based on other objects in the scene [13]. These co
plex pipelines are slow and hard to optimize because g

S x S grid on input

g boxes + confidence

p

Class probability map

Final detections




Prior Two-Step Object Detection Approaches

classifier

Rol pooling
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s with CNN features

ped region aeroplane? no. .
4 N - Region Proposal Networ

. i / 8
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conv layers

[Girshick et al., CVPR’14] Rich feature hierarchies for accurate object detection and semantic segmentation
[Ren et al., NIPS’'15] Faster R-CNN: Towards real-time object detection with region proposal networks



YOLO Grid-Based Prediction

Object probability

x coordinate
y coordinate

width

height
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Prediction Post-Processing in YOLO

1- Remove the low probability bounding boxes

2- Apply non-max suppression (NMS)




Prediction Post-Processing in YOLO

1- Remove the low probability bounding boxes
2- Apply non-max suppression (NMS)

Limitations: struggles with small objects/crowded scene

# YOLOvV3, v4,v5,v7, and YOLOV8 add multi-scale predictions & stronger backbones.




Vision Transformer
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AN IMAGE IS WORTH 16X16 WORDS:
TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE
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ABSTRACT

While the Transformer architecture has become the de-facto standard for natural
language processing tasks, its applications to computer vision remain limited. In
vision, attention is either applied in conjunction with convolutional networks, or
used to replace certain components of convolutional networks while keeping their
overall structure in place. We show that this reliance on CNNs is not necessary
and a pure transformer applied directly to sequences of image patches can perform
very well on image classification tasks. When pre-trained on large amounts of
data and transferred to multiple mid-sized or small image recognition benchmarks
(ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent
results compared to state-of-the-art convolutional networks while requiring sub-
stantially fewer computational resources to train.'

I INTRODUCTION

Self-attention-based architectures, in particular Transformers (Vaswani et al., 2017), have become
the model of choice in natural language processing (NLP). The dominant approach is to pre-train on
a large text corpus and then fine-tune on a smaller task-specific dataset (Devlin et al., 2019). Thanks
to Transformers’ computational efficiency and scalability, it has become possible to train models of
unprecedented size, with over 100B parameters (Brown et al., 2020; Lepikhin et al., 2020). With the
models and datasets growing, there is still no sign of saturating performance.

In computer vision, however, convolutional architectures remain dominant (LeCun et al., 1989;

etal., 2012; He et al., 2016). Inspired by NLP suc s, multiple works try combining
CNN-like architectures with self-attention (Wang et al., 2018; Carion et al., 2020), some replacing
the convolutions entirely (Ramachandran et al., 2019; Wang et al., 2020a). The latter models, while
theoretically efficient, have not yet been scaled effectively on modern hardware accelerators due to
the use of specialized attention patterns. Therefore, in large-scale image recognition, classic ResNet-
like architectures are still state of the art (Mahajan et al., 2018; Xie et al., 2020; Kolesnikov et al.,
2020).
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Image Patching
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The CLS Token



Extra learnable
embedding [cls token]

Position
Embedding

Source: A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization
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Fixed vs. Learned Positional Embeddings
That's patch #4
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That's patch #16



Fixed vs. Learned Positional Embeddings

Pos. Emb. Default/Stem Every Layer Every Layer-Shared

No Pos. Emb. 0.61382 N/A N/A
1-D Pos. Emb. 0.64206 0.63964 0.64292
2-D Pos. Emb. 0.64001 0.64046 0.64022
Rel. Pos. Emb. 0.64032 N/A N/A

Table 8: Results of the ablation study on positional embeddings with ViT-B/16 model evaluated on
ImageNet 5-shot linear.

2020

An Image is Worth 16X 16 Words
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Attention

Block used in transformers that fulfils two responsibilities:

* Identifying what is relevant to an input out of everything in its context

* Add more meaning to the representation of an entity by using the representation
of its context

But why ?

season season
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Attention

Block used in transformers that fulfils two responsibilities:

* Identifying what is relevant to an input out of everything in its context

* Add more meaning to the representation of an entity by using the representation
of its context

But why ?

Show’s last season | hate rainy season

Chicken didn’t aross the road because it was Chicken didn’t cross the road because it was
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Determining Relevance

==III-I-I-
D x Head Dimension
Query : Input representation. We are trying to quantify how much is every context item relevant to this representation
Key : Context representation. Used to quantify relevance to the query representation
Value : Context representation which will be used to add understanding of relevant context into the input



Determining Relevance
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Determining Relevance
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Context-Aware Input Updating
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Context-Aware Input Updating
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Context-Aware Input Updating (For ALL Patches)
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Context-Aware Input Updating (For ALL Patches)

D x Head Dimension

4 x Head Dimension

D
l*-l
i
i

4 x Head Dimension

4x4

Context Representation for
ALL Patches

4 x Head Dimension



Multi Head Attention

There can be multiple factors of relevance



Each head has unique weight matrices, despite the uniform color representation
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Attention Map Visualization

Source: Exploring Explainability for Vision Transformers
2020 (Jacob Gildenblat)

Quantifying Attention Flow in Transformers



Position Embedding Visualization
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Position Embedding Visualization

Position embedding similarity
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