
Behzad Bozorgtabar

EPFL, LTS5

Image Analysis and Pattern Recognition, EE-451

Deep Learning for Real World Problems

2

Object Detection Human Understanding Autonomous Driving

Datapoint 1

Datapoint 2

Datapoint 3

Representation learning

Representation 1

Representation 2

Representation 3

Embedding Space

High-level representations are typically nuisance-invariant

Neuron and Synapse

Neural Network
Synapses/weights

Synapses / weights

Neurons / Activations

Activation Functions
Synapses/weights

logistic

tanh

REctified Linear

Unit (RELU)
Leaky RELU

Good ones

Fully Connected (Dense) Layer
Synapses/weights

Each output neuron is connected to all previous
layer neurons

y2y1y0

x4x3x0 x1 x2

w00 w42

coci

=
co

WTX Y

ci

• Shape of Tensors:

Input Features X : (1, ci)

Output Features Y : (1, co)

Weights W : (co, ci)

Bias b : (co,)

Scaling Issue in Fully Connected Layers
Synapses/weights

The number of weights grows quadratically with the number of neurons

Complexity of handling image data

Convolutional Neural
Networks and Intuition

Intuition Behind Convolution Layer (1)

Restricting the degrees of freedom
o A structured layer to process a small region with fewer

weights (many useful features are local)

Layer 1:
edge detectors?

Layer 2:
beak? wing?

Intuition Behind Convolution Layer (1)

Restricting the degrees of freedom
o A structured layer to process a small region with fewer

weights (many useful features are local)

“beak”
detector

Intuition Behind Convolution Layer (2)

Restricting the degrees of freedom
o Weight sharing: using the same weights for different parts

of the image

“upper-left
beak” detector

“middle beak”
detector

Weight sharing

Transitioning from Fully Connected to
Convolution Layer

● Local Connectivity

● Weight Sharing

● Multiple Feature Detectors

Connectivity Pattern: Fully Connected vs. Convolution Layer

FC layer

Image is 𝟏𝟐𝟖 × 𝟏𝟐𝟖 × 𝟑 = 𝟒𝟗, 𝟏𝟓𝟐

First layer is 𝟔𝟒-dim

𝟔𝟒 × 𝟒𝟗, 𝟏𝟓𝟐 ≈ 𝟑, 𝟎𝟎𝟎, 𝟎𝟎𝟎

Convolution layer

Patch is 𝟑 × 𝟑 × 𝟑 = 𝟐𝟕

First layer is 𝟔𝟒-dim

𝟔𝟒 × 𝟐𝟕 = 𝟏𝟕𝟐𝟖

Convolutions?

Convolution on Images?

Filter Effects

Input −1 −1 −1
−1 8 −1
−1 −1 −1

Sharpen

0 −1 0
−1 5 −1
0 −1 0

Box mean

1 1 1 1

9
1 1 1
1 1 1

Gaussian blur

1 1 2 1

16
2 4 2
1 2 1

Edge detection

Filter Effects

Input −1 −1 −1
−1 8 −1
−1 −1 −1

Sharpen

0 −1 0
−1 5 −1
0 −1 0

Box mean

1 1 1 1

9
1 1 1
1 1 1

Gaussian blur

1 1 2 1

16
2 4 2
1 2 1

Edge detection

Convolutions on Volumetric Images

Images have depth: e.g., RGB → 3 channels

Convolve filter with image
i.e., ‘slide’ over it and:
– Apply filter at each location
– Compute dot product

width

filter 5×5×3

3
5

5

Depth dimension *must* match; i.e., filter
extends the full depth of the input

32

32

image 32×32×3

height depth

Slide from I2DL: Prof. Cremers

Convolutions on Volumetric Images

(5×5×3)×1 (5×5×3)×1 1

32

32

3

3
5

5

32×32×3 image (𝑿)

5×5×3 filter (weight tensor𝒘)

1 number at time:
equals to dot product between
filter weights 𝒘 and 𝒙𝒊 − 𝑡ℎ chunk
of the image. Here: 5.5.3=75-dim
+bias

𝑧𝑖 = 𝑤𝑇𝑥𝑖 + 𝑏
𝑧𝑖

Slide from I2DL: Prof. Cremers

Convolutions on Volumetric Images

Activation map

(also feature map)

Slide over all spatial locations 𝑥𝑖
and compute all output 𝑧𝑖 ,
there are 28×28 unique
locations

1

28

28
32

32

3

3
5

5

32×32×3 image

5×5×3 filter

Convolve

Convolutions on Volumetric Images

32

3
5

5

32×32×3 image

5×5×3 filter

28

Feature maps

Let’s apply a second filter
with different weights!

Convolve

1 132

3

28

Convolution Layer

32

32

3

32×32×3 image

6

28

28

Convolution “Layer”

Let’s apply **six** filters, each with different weights!

Feature maps

➢ Filter width, height
➢ Number of filters

Convolution
Layer

Convolution Layer

32

32

3

32×32×3 image

6

28

28

Let’s apply **six** filters, each with different weights!

Feature maps

Convolution
Layer

Also 6-dim bias vector:

Stride

How far to move filter (kernel) between applications

Increasing stride downsamples the image

Stride

How far to move filter (kernel) between applications

Increasing stride downsamples the image

𝑁×𝑁
𝑭 × 𝑭
𝑆

𝑁 − 𝐹

𝑆
+ 1

𝑁 − 𝐹

𝑆
+ 1

Input:
Filter:
Stride:
Output:

Padding

Convolutions have problems on edges

Padding

Convolutions have problems on edges

Padding

Convolutions have problems on edges

Pad: add extra pixels on images

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0Im
a

g
e

 7
×

7
 +

 z
e

ro
 p

a
d

d
in

g

Padding

Convolutions have problems on edges

Pad: add extra pixels on images

Padding maintains feature map dimensions after convolution

Conv +

 ReLU

The spatial size would decrease too rapidly 32 → 28 → 24 → 20

Conv +

 ReLU
Conv +

 ReLU

32 28 24 205 filters

5 × 5
× 3

8 filters

5 × 5
× 5

12 filters
5 × 5 × 85 8 12

Pooling Layer

Processing: pool values over a region of the feature map

Output: a reduced version of the feature map by a factor of the stride

Pooling types: Max, Average

Most common: 2×2 maxpooling, stride of 2

7 3 5 2

8 7 1 6

4 9 3 9

0 8 4 5

8 6

9 9

Input feature map (single slice)

2×2 maxpooling
and stride of 2

‘Pooled’ output

Pooling Layer

Introduces (small) translation invariance

CNN Prototype for Image Classification

Feature Extractor : Convolution+ ReLU activations+ Pooling (repeated)

Classification Head : Flattening→ FC Layers→Output Classification

Softmax: Multi-Class Classification

Softmax: the normalized exponential function of all scores (logits)

● 𝐱 represents the input features (final layer)

● 𝑺𝒊 is unnormalized score of class 𝒊 (final layer)
𝑝 𝑦 = 𝑖ȁx =

𝑒𝑆𝑖

σ𝑗=1
𝐾 𝑒𝑆𝑗

𝑝 𝑦 = 𝑖ȁx =
𝑒𝑆𝑖

σ𝑗=1
𝐾 𝑒𝑆𝑗

Cross-Entropy Loss for Multi-Class Classification

▪ 𝒚𝒊 is the one-hot encoded label for class 𝒊

▪ 𝒑𝒊 is the predicted probability of class 𝒊

ℒ = −෍

𝑖=1

𝐾

𝑦𝑖 log 𝑝𝑖

Cross-Entropy Loss for Multi-Class Classification

▪ 𝒚𝒊 is the one-hot encoded label for class 𝒊

▪ 𝒑𝒊 is the predicted probability of class 𝒊

ℒ = −෍

𝑖=1

𝐾

𝑦𝑖 log 𝑝𝑖

The gradient of loss w.r.t. logit

For the correct class 𝑗 𝑦𝑗 = 1

Cross-Entropy Loss for Multi-Class Classification

▪ 𝒚𝒏,𝒊 is the actual label for the 𝒏-th sample for class 𝒊

▪ 𝒑𝒏,𝒊 is the predicted probability for the 𝒏-th sample of class 𝒊

▪ 𝑵 is the number of samples in a batch

ℒ𝑡𝑜𝑡𝑎𝑙 = −
1

𝑁
෍

𝑛=1

𝑁

෍

𝑖=1

𝐾

𝑦𝑛,𝑖log 𝑝𝑛,𝑖

CNN Learns Hierarchical Features

2014
Visualizing and Understanding Convolutional Networks

Optimizing Neural
Networks

Loss Optimization

Finding network’s parameters (weights) that achieve the
lowest loss

𝑊∗ = argmin
𝑊

1

𝑛
෍

𝑖=1

𝑛

ℒ 𝑓 𝑥 𝑖 ;𝑊 , 𝑦 𝑖

𝑊∗ = argmin
𝑊

𝐽 𝑊

𝑊 = 𝑊 0 ,𝑊 1 , ⋯

Loss Optimization

○ Randomly pick a point 𝑤0, 𝑤1

○ Compute gradient,
𝜕𝐽 𝑊

𝜕𝑊

○ Take a small step in the opposite
direction of the gradient

○ Repeat this process until convergence

𝑤0

𝑤1

𝐽 𝑤0, 𝑤1

Mini-Batch Gradient Descent

● Algorithm:

○ Initialize weights randomly ~𝒩 0, 𝜎2

○ Loop until convergence:
○ Pick a mini-batch of 𝐵 data samples

○ Compute gradient,
𝜕𝐽 𝑊

𝜕𝑊
=

1

𝐵
σ𝑘=1
𝐵 𝜕𝐽𝑘 𝑊

𝜕𝑊

○ Update weights, 𝑊 ← 𝑊 − 𝛼
𝜕𝐽 𝑊

𝜕𝑊
○ Return weights

𝐽 𝑤0, 𝑤1

𝑤0

𝑤1

Use a suitable method (e.g., Xavier or He initialization) to

ensure stable variance of activations and gradients.

Better estimation of true gradient and fast to compute,
smoother convergence

Backpropagation: Chain Rule in Action

𝑥 𝑧1 ො𝑦
𝑤1 𝑤2

𝐽 𝑊

𝜕𝐽 𝑊

𝜕𝑤2
=
𝜕𝐽 𝑊

𝜕 ො𝑦
∗
𝜕 ො𝑦

𝜕𝑤2

Backpropagation: Chain Rule in Action

𝑥 𝑧1 ො𝑦
𝑤1 𝑤2

𝐽 𝑊

𝜕𝐽 𝑊

𝜕𝑤2
=
𝜕𝐽 𝑊

𝜕 ො𝑦
∗
𝜕 ො𝑦

𝜕𝑤2

Let’s apply chain rule !

Backpropagation: Chain Rule in Action

𝑥 𝑧1 ො𝑦
𝑤1 𝑤2

𝐽 𝑊

𝜕𝐽 𝑊

𝜕𝑤1
=
𝜕𝐽 𝑊

𝜕 ො𝑦
∗
𝜕 ො𝑦

𝜕𝑤1

Apply chain rule

Backpropagation: Chain Rule in Action

𝜕𝐽 𝑊

𝜕𝑤1
=
𝜕𝐽 𝑊

𝜕 ො𝑦
∗
𝜕 ො𝑦

𝜕𝑧1
∗
𝜕𝑧1
𝜕𝑤1

𝑥 𝑧1 ො𝑦
𝑤1 𝑤2

𝐽 𝑊

Gradient Dynamics in Deep Network Training

𝜕𝐽

𝜕𝑤1
=

𝜕𝐽

𝜕ℎ𝑛
∗

𝜕ℎ𝑛
𝜕ℎ𝑛−1

∗
𝜕ℎ𝑛−1
𝜕ℎ𝑛−2

∗ ⋯∗
𝜕ℎ2
𝜕ℎ1

∗
𝜕ℎ1
𝜕𝑤1

In most cases, there are two possible solutions:

● We get zero if

● We get infinity if

● We only get a reasonable answer if the numbers are all
close to one

𝜕ℎ𝑖
𝜕ℎ𝑖−1

< 1 → ෑ

𝑖=2

𝑛
𝜕ℎ𝑖
𝜕ℎ𝑖−1

⋯ Vanish!

𝜕ℎ𝑖
𝜕ℎ𝑖−1

> 1 → ෑ

𝑖=2

𝑛
𝜕ℎ𝑖
𝜕ℎ𝑖−1

⋯ Explode!

Limitations of Gradient Descent + Alternatives

Challenges with Vanilla Gradient Descent:

- Oscillations due to anisotropic curvature of the loss surface

- Slow convergence

We take multiple back and forth

steps in this direction. We’d ideally like to move faster in this direction

Source: A. Ng

Limitations of Gradient Descent + Alternatives

Gradient Descent with Momentum:

- Smoother updates, dampens oscillations

- Speeds up convergence

[Sutskever et al., ICML’13] On the importance of initialization and momentum in deep learning

Limitations of Gradient Descent + Alternatives

Adam (Adaptive Moment Estimation) Optimizer:

- Combines momentum (first moment of gradients) with adaptive learning

rates based on the second moment (squared gradients)

- Popular in deep learning due to its robustness

Note: Many other optimizers exist (e.g., RMSProp, Adagrad, AdamW)

[Kingma et al., ICLR'15] Adam: A method for stochastic optimization

Learning Rate Tuning
Synapses/weights

lo
ss

epoch
Good learning rate

Low learning rate

model gets stuck in false
local minima or plateau

High learning rate

never reaches the optimum

Regularization &
Data Augmentation

Over-and Underfitting
Synapses/weights

Underfitted Appropriate Overfitted

Source: Deep Learning by Adam Gibson, Josh Patterson, O‘Reily Media Inc., 2017

Over-and Underfitting
Synapses/weights

Training/ Validation curve

Credits: Deep Learning. Goodfellow et al.

Training error
too high

Generalization
gap is too big

Over-and Underfitting
Synapses/weights

Training/ Validation curve

Regularization

Credits: Deep Learning. Goodfellow et al.

Training error
too high

Generalization
gap is too big

How can we
prevent our model
from overfitting?

Regularization
Synapses/weights

• Loss function ℒ 𝑦, Ƹ𝑦,𝑤 = σ𝑖=1
𝑛 ො𝑦𝑖 − 𝑦𝑖

2 + 𝜆𝑅 𝑤

• Regularization techniques
– L2 regularization

– L1 regularization

– Dropout

– Early stopping

– ⋯

Add regularization
term to loss function

Regularization Example
Synapses/weights

• Input :3 features 𝑥 = 1,2,1

• Two linear classifiers that give the same result:

• 𝑤1 = 0, 0.9, 0

• 𝑤2= 0.15, 0.75, 0.15

Ignores 𝟐 features

Use all features

Regularization Example (L2)
Synapses/weights

• Loss function ℒ 𝑦, Ƹ𝑦,𝑤 = σ𝑖=1
𝑛 𝑥𝑖𝑤𝑗𝑖 − 𝑦𝑖

2
+ 𝜆𝑅 𝑤

• L2 regularization 𝑅 𝑤 = 𝑤 2
2 = σ𝑖=1

𝑛 𝑤𝑖
2

𝑥 = 1, 2, 1 , 𝑤1 = 0, 0.9, 0 , 𝑤2 = 0.15, 0.75, 0.15

𝑅 𝑤1 = 0 + 0.92 + 0 = 0.81

𝑅 𝑤2 = 0.152 + 0.752 + 0.152 = 0.6075 Minimization

Promotes weight
uniformity

Regularization Example (L1)
Synapses/weights

• Loss function ℒ 𝑦, Ƹ𝑦,𝑤 = σ𝑖=1
𝑛 𝑥𝑖𝑤𝑗𝑖 − 𝑦𝑖

2
+ 𝜆𝑅 𝑤

• L1 regularization 𝑅 𝑤 = 𝑤 1 = σ𝑖=1
𝑛 𝑤𝑖

𝑥 = 1, 2, 1 , 𝑤1 = 0, 0.9, 0 , 𝑤2 = 0.15, 0.75, 0.15

𝑅 𝑤1 = 0 + 0.9 + 0 = 0.9

𝑅 𝑤2 = 0.15 + 0.75 + 0.15 = 1.05

Minimization

enforces sparsity

Regularization: Effect (L1)
Synapses/weights

• Dog classifier takes different inputs

Furry

Has two eyes

Has a tail

Has paws

L1 regularization

encourages the model
to rely on only a few
key features

Has two ears

Regularization: Effect (L2)
Synapses/weights

• Dog classifier takes different inputs

Furry

Has two eyes

Has a tail

Has paws

L2 regularization

leverages all
information to
influence model
learning

Has two ears

Data Augmentation: Motivation
Synapses/weights

Pose Appearance Illumination

Data Augmentation
Synapses/weights

• A classifier has to be invariant to a wide variety of transformations
• Augmentation: simulating plausible transformations

Libraries: torchvision.transforms, Kornia, Albumentations

Valid & Plausible Transformations for Data Augmentation
Synapses/weights

• Any operation that does not alter the original label
• Domain specific consideration: simulating domain shift

Stainlib: a Python library for augmentation of histopathology images

Data Augmentation: Advanced (Mixup & Variants)
Synapses/weights

Mixup: Beyond Empirical Risk Minimization

Data Augmentation: Advanced (RandAugment)
Synapses/weights

RandAugment: Practical automated data augmentation with a reduced search space

Vision Benchmarks,
ResNet, BatchNorm &

Transfer Learning

Key Datasets as Benchmarks for Image Classification

● Example datasets:

○ MNIST (handwritten digits), 1990s-today: 60,000 images

○ CIFAR 10 & CIFAR 100, 2009: ~60,000 images

○ ILSVRC (ImageNet-1K), 2009: 1.2 million training images, 1000 categories

Google's JFT-300M

ImageNet- 21K

ImageNet- 1K

CIFAR - 10

MNIST

LAION- 400M

CNN Architectures: Accuracy vs. Complexity

Residual Networks (ResNets)

Weight Layer

Weight Layer

𝑅𝑒𝐿𝑈

𝑅𝑒𝐿𝑈

𝐻(𝑥)

Any stack of

two layers

Plain Net
𝑥

Weight Layer

Weight Layer

𝑅𝑒𝐿𝑈

𝑅𝑒𝐿𝑈

+𝐹 𝑥 + 𝑥

Residual Net
𝑥

𝐹(𝑥)
Identity

𝑥

𝐻(𝑥)=

2016
Deep Residual Learning for Image Recognition

𝑅𝑒𝐿𝑈

𝑅𝑒𝐿𝑈

𝐹 (𝑥) + 𝑥𝐻(𝑥)=

+

ResNets ResNet

Skip Connection

Why is this model important?

o Frequently used today

o Skip connections and use of batch normalization

o Use of global average pooling instead of FC layers

Depth vs. Performance

dashed: train
solid: test

CIFAR-10 Experiments

Reduces “internal covariate shift”

Batch Normalization

Reduces “internal covariate shift”

Normalizes activations batch-wise;
fully differentiable for backprop

Batch Normalization

Batch Normalization (Fully Connected Version)

Input:

Normalized x,
Shape is N x D

Per-feature
std, shape is D

XN

D

Per-feature
mean, shape is D

(num of features) (m
in

i-
b

a
tc

h
 s

iz
e

)

Batch Normalization (Fully Connected Version)

Input:

Per-feature
std, shape is D

XN

D

Problem: What if zero-mean, unit
variance is too hard of a constraint?

Normalized x,
Shape is N x D

Per-feature
mean, shape is D

Batch Normalization (Fully Connected Version)

Input:

Per-feature
std, shape is D

Learnable scale and
shift parameters:

Learning = ,
= will recover the

identity function!

Output,
Shape is N x D

Normalized x,
Shape is N x D

Per-feature
mean, shape is D

Batchnorm eliminates the need for bias terms

Batch Normalization : Test-Time

Input:

Per-feature
std, shape is D

Learnable scale and
shift parameters:

Learning = ,
= will recover the

identity function!

Output,
Shape is N x D

Normalized x,
Shape is N x D

Minibatch-dependent estimates

Per-feature
mean, shape is D

Batch Normalization : Test-Time

Input:

Per-feature
std, shape is D

Learnable scale and
shift parameters:

Output,
Shape is N x D

Per-feature
mean, shape is D

Normalized x,
Shape is N x D

(Running) average of
values seen during

training

(Running) average of
values seen during

training

-During testing, batchnorm
becomes a fixed linear (affine)
transformation.
-Can be fused with previous
weight layer with no extra
overhead

Batch Normalization for ConvNets

Batch Normalization for

fully-connected networks

x: N × D

Normalize

𝜇,𝝈: 1 × D

𝜸,β: 1 × D

y = 𝜸(x-𝜇)/𝝈+β

Batch Normalization for

convolutional networks

(Spatial Batchnorm, BatchNorm2D)

x: N×C×H×W

Normalize

𝜇,𝝈: 1×C×1×1

𝜸,β: 1×C×1×1

y = 𝜸(x-𝜇)/𝝈+β

Other Normalizations

Transfer Learning: Fine-Tuning for a New Task

Transfer Learning

o Optimized learning with scarce data, freeze early layers, replace final
classification layers

o Optionally fine-tune deeper layers if the new domain differs significantly

Freeze

Replace

Segmentation

Object Detection

Versatile Applications
of CNNs

Semantic Segmentation: Fully Convolutional Networks

o Network designed with only convolutional layers, handling arbitrary input sizes

o Uses downsampling and upsampling operations (transpose convolutions)

Recent approaches like U-Net and other encoder-decoder designs follow a similar
paradigm

You Only Look Once (YOLO)

Prior Two-Step Object Detection Approaches

[Girshick et al., CVPR’14] Rich feature hierarchies for accurate object detection and semantic segmentation

[Ren et al., NIPS’15] Faster R-CNN: Towards real-time object detection with region proposal networks

1

1

2

2

YOLO Grid-Based Prediction

Prediction Post-Processing in YOLO

1- Remove the low probability bounding boxes

2- Apply non-max suppression (NMS)

Limitations: struggles with small objects/crowded scene

YOLOv3, v4, v5, v7, and YOLOv8 add multi-scale predictions & stronger backbones.

1 2

Prediction Post-Processing in YOLO

1- Remove the low probability bounding boxes

2- Apply non-max suppression (NMS)

Limitations: struggles with small objects/crowded scene

YOLOv3, v4, v5, v7, and YOLOv8 add multi-scale predictions & stronger backbones.

1 2

Vision Transformer

2017
Attention Is All You Need

By Francisco Castillo Carrasco (towards data science)

Sequence of Tokens

Input Embedding

Image Patching

16 px

16 px

channels

width

height

patch size

Number of Patches x c x p1 x p2

Pixel 1 - R

Pixel 1 - G

Pixel 1 - B

Pixel 2 - R

Pixel 2 - G

Pixel 2 - B

Pixel p1p2 - R

Pixel p1p2 - G

Pixel p1p2 - B

Number of Patches x c x p1 x p2

FC Layer

Number of Patches x DNumber of Patches x c x p1 x p2

D = Dimension at which transformer layers will operate

Pixel 1 - R

Pixel 1 - G

Pixel 1 - B

Pixel 2 - R

Pixel 2 - G

Pixel 2 - B

Pixel p1p2 - R

Pixel p1p2 - G

Pixel p1p2 - B

Number of Patches x c x p1 x p2

FC Layer

Number of Patches x c x p1 x p2

D = Dimension at which transformer layers will operate

N = Number of patches (size of the sequence of tokens)

N x D

The CLS Token

Source: A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization

The Positional
Embedding

That‘s patch #4

That‘s patch #16

Source: Amirhossein Kazemnejad's Blog

Fixed vs. Learned Positional Embeddings

Fixed vs. Learned Positional Embeddings

2020
An Image is Worth 16× 16 Words

Convert Image into Sequence of

Patches

Add CLS token to sequence of

Patches

Add Positional Information to

Patches

Patch Embedding

Attention
Mechanism and

Transformer
Encoder

Block used in transformers that fulfils two responsibilities:

• Identifying what is relevant to an input out of everything in its context

• Add more meaning to the representation of an entity by using the representation
of its context

But why ?

season season

Attention

Block used in transformers that fulfils two responsibilities:

• Identifying what is relevant to an input out of everything in its context

• Add more meaning to the representation of an entity by using the representation
of its context

But why ?

season seasonShow’s last I hate rainy

Attention

Block used in transformers that fulfils two responsibilities:

• Identifying what is relevant to an input out of everything in its context

• Add more meaning to the representation of an entity by using the representation
of its context

But why ?

season seasonShow’s last I hate rainy

Chicken didn’t cross the road because it was
Chicken didn’t cross the road because it was

Attention

Block used in transformers that fulfils two responsibilities:

• Identifying what is relevant to an input out of everything in its context

• Add more meaning to the representation of an entity by using the representation
of its context

But why ?

season seasonShow’s last I hate rainy

Chicken didn’t cross the road because it was
Chicken didn’t cross the road because it was

happy on this side itself
too wide

Attention

Attention

Attention

3 421

D x Head Dimension

D D D D D

W

1

Q1

Query : Input representation. We are trying to quantify how much is every context item relevant to this representation

WQ

W
K

V
WQ W K

W K W K W K

Determining Relevance

Key : Context representation. Used to quantify relevance to the query representation

Value : Context representation which will be used to add understanding of relevant context into the input

Head Dimension Head

Dimension

Head

Dimension

Head

Dimension

3 421

D x Head Dimension

D D D D D

W

1

Q1 K3 K4K2K1

Head

Dimension

WQ

W
K

V
WQ W K

W K W K W K

Determining Relevance

3 421
D D D D D

1

Head Dimension

Q1 K3 K4K2K1

Head

Dimension

Head

Dimension

Head

Dimension

Head

Dimension

Softmax

W

W
K

V

WQ

h Head Dimension

Determining Relevance

D x Head Dimension

K3 K4K2K1

3 421
D D D D D

1

Head Dimension

Q1

Head

Dimension

Head

Dimension

Head

Dimension

Head

Dimension

V3 V4V2V1

* * * *

W

W
K

V

WQ

W
V

Context-Aware Input Updating

D x Head Dimension

K3 K4K2K1

3 421
D D D D D

1

Head Dimension

Q1

Head

Dimension

Head

Dimension

Head

Dimension

Head

Dimension

V3 V4V2V1

* * * *

Context Representation for

Patch 1

Head Dimension

W

W
K

V

WQ

W
V

Context-Aware Input Updating

D x Head Dimension

3

4

2

1

D x Head Dimension

D

D

D

D

4 x D

Q

WV

WQ

W K
K

V

4 x Head Dimension

Q

K
T

4 x Head Dimension

Head Dimension x 4

i

Similarity between

query representation

of ith patch

and

key representation

of jth patch

4 x 4

Context-Aware Input Updating (For ALL Patches)

j

3

4

2

1

D x Head Dimension

D

D

D

D

Q

WV

WQ

W K
K

V

4 x Head Dimension

4 x 4

V

4 x Head Dimension

Context Representation for

ALL Patches

*

4 x D

4 x Head Dimension

Context-Aware Input Updating (For ALL Patches)

3

4

2

1D

D

D

D

4 x D

Why ?

There can be multiple factors of relevance

Multi Head Attention

3

4

2

1

Each D x Head Dimension

D

D

D

D

W
V

W
Q

W
K

W
V

W
Q

W
K

W
V

W
Q

W
K

W
V

W
Q

W
K

W
V

W
Q

W
K

W
V

W
Q

W
K

W
V

W
Q

W
K

W
V

W
Q

W
K

Q

K

V

Q

K

V

Q

K

V

Q

K

V

Q

K

V

Q

K

V

Q

K

V

Q

K

V

4 x D

4 x Head Dimension

Each head has unique weight matrices, despite the uniform color representation

3

4

2

1D

D

D

D

W
V

W
Q

W
K

W
V

W
Q

W
K

W
V

W
Q

W
K

W
V

W
Q

W
K

W
V

W
Q

W
K

W
V

W
Q

W
K

W
V

W
Q

W
K

W
V

W
Q

W
K

V V V V V V V V

4 x 4 4 x 4 4 x 4 4 x 4 4 x 4 4 x 4 4 x 4 4 x 4

* * * * * * * *
4 x D

4 x Head Dimension

Each D x Head Dimension

3

4

2

1D

D

D

D

W
V

W
Q

W
K

W
V

W
Q

W
K

W
V

W
Q

W
K

W
V

W
Q

W
K

W
V

W
Q

W
K

W
V

W
Q

W
K

W
V

W
Q

W
K

W
V

W
Q

W
K

Context

Representation for

ALL Patches

for HEAD 1

Context

Representation for

ALL Patches

for HEAD 2

Context

Representation for

ALL Patches

for HEAD 8

4 x Head

Dimension

4 x Head

Dimension

4 x Head

Dimension

4 x (8 * Head Dimension) 4 x DOutput FC Layer

4 x D

Each D x Head Dimension

Concatenate

Project from D

to get QKV for each head

Compute Scaled Dot

Product Attention

Compute Weighted Value,

Concatenation of heads,

Project back to D

Self Attention Block

MLP

Multi Head Attention

Patch Embedding Block

LayerNorm

LayerNorm

+

+

Transformer Block

FC Layer

FC Layer

GELU

Patch Embedding Block

Transformer

Block

x Layers
CLS

FC Layer

Classification Scores

ViT CNN

CNNs ViT

Strong inductive bias

(translation invariance)

Not too data-hungry

Hierarchical structure

(receptive field)

No strong inductive bias

Data-hungry

Global structure

(attention)

Source: Exploring Explainability for Vision Transformers

(Jacob Gildenblat)2020
Quantifying Attention Flow in Transformers

Attention Map Visualization

Position Embedding 1

Position Embedding 2

Position Embedding 196

Position Embedding i

Position Embedding Visualization

Position Embedding Visualization

References

Books & Core Reading

o Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. → Chapter
6: Deep Feedforward Networks

Courses & Tutorials

o Alexander Amini. Introduction to Deep Learning, MIT 6.S191

o Ali Farhadi. Introduction to Deep Learning, CSE 490G1/599G1

o Daniel Cremers. Introduction to Deep Learning, IN2346

o Sergey Levine. Designing, Visualizing, and Understanding Deep Neural Networks, UC
Berkeley, CS W182/282A

References

Key Papers

o He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image
Recognition. CVPR.→ Introduces ResNet

o Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift. ICML.→ BatchNorm

o Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-
Time Object Detection. CVPR.→ Original YOLO paper

o Dosovitskiy, A., et al. (2021). An Image Is Worth 16x16 Words: Transformers for Image
Recognition at Scale. ICLR.→ Vision Transformers (ViT)

o Vaswani, A., et al. (2017). Attention Is All You Need. NeurIPS.→ Foundational Transformer
paper

References

Additional Useful Links

o CS25: Transformers United V4 (YouTube)
→ https://www.youtube.com/playlist?list=PLoROMvodv4rNiJRchCzutFw5ItR_Z27CM

o CS231n: Convolutional Neural Networks for Visual Recognition
→ https://cs231n.github.io/convolutional-networks/
→→ https://cs231n.github.io/understanding-cnn/

o The Illustrated Transformer by Jay Alammar
→ https://jalammar.github.io/illustrated-transformer/

Data Augmentation Libraries:

• TorchVision, Kornia, Albumentations
→ Check their official documentation and GitHub repositories

https://www.youtube.com/playlist?list=PLoROMvodv4rNiJRchCzutFw5ItR_Z27CM
https://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/understanding-cnn/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91: Vision Transformer
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136

